Inverse problems on star-type graphs: differential operators of different orders on different edges
Vyacheslav Yurko
Open Mathematics, Tome 12 (2014), p. 483-499 / Harvested from The Polish Digital Mathematics Library

We study inverse spectral problems for ordinary differential equations on compact star-type graphs when differential equations have different orders on different edges. As the main spectral characteristics we introduce and study the so-called Weyl-type matrices which are generalizations of the Weyl function (m-function) for the classical Sturm-Liouville operator. We provide a procedure for constructing the solution of the inverse problem and prove its uniqueness.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269745
@article{bwmeta1.element.doi-10_2478_s11533-013-0352-3,
     author = {Vyacheslav Yurko},
     title = {Inverse problems on star-type graphs: differential operators of different orders on different edges},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {483-499},
     zbl = {1312.34043},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0352-3}
}
Vyacheslav Yurko. Inverse problems on star-type graphs: differential operators of different orders on different edges. Open Mathematics, Tome 12 (2014) pp. 483-499. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0352-3/

[1] Avdonin S., Kurasov P., Inverse problems for quantum trees, Inverse Probl. Imaging, 2008, 2(1), 1–21 http://dx.doi.org/10.3934/ipi.2008.2.1 | Zbl 1148.35356

[2] Beals R., Deift P., Tomei C., Direct and Inverse Scattering on the Line, Math. Surveys Monogr., 28, American Mathematical Society, Providence, 1988 http://dx.doi.org/10.1090/surv/028 | Zbl 0679.34018

[3] Belishev M.I., Boundary spectral inverse problem on a class of graphs (trees) by the BC method, Inverse Problems, 2004, 20(3), 647–672 http://dx.doi.org/10.1088/0266-5611/20/3/002

[4] Brown B.M., Weikard R., A Borg-Levinson theorem for trees, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2005, 461(2062), 3231–3243 http://dx.doi.org/10.1098/rspa.2005.1513 | Zbl 05213594

[5] Buterin S.A., Freiling G., Inverse scattering problem for the Sturm-Liouville operator on a noncompact star-type graph, Schriftenreihe des Instituts für Mathematik, SM-DU-725, Universität-Duisburg-Essen, 2011, 1–17 | Zbl 1292.34011

[6] Chadan K., Colton D., Päivärinta L., Rundell W., An Introduction to Inverse Scattering and Inverse Spectral Problems SIAM Monogr. Math. Model. Comput., SIAM, Philadelphia, 1997 http://dx.doi.org/10.1137/1.9780898719710 | Zbl 0870.35121

[7] Freiling G., Ignatyev M., Spectral analysis for Sturm-Liouville operator on sun-type graphs, Inverse Problems, 2011, 27(9), #095003 http://dx.doi.org/10.1088/0266-5611/27/9/095003 | Zbl 1251.34022

[8] Freiling G., Yurko V., Inverse Sturm-Liouville Problems and their Applications, NOVA Science, Huntington, 2001 | Zbl 1037.34005

[9] Freiling G., Yurko V., Inverse problems for differential operators on trees with general matching conditions, Appl. Anal., 2007, 86(6), 653–667 http://dx.doi.org/10.1080/00036810701303976 | Zbl 1130.34005

[10] Freiling G., Yurko V., Inverse problems for Sturm-Liouville operators on noncompact trees, Results Math., 2007, 50(3–4), 195–212 http://dx.doi.org/10.1007/s00025-007-0246-4

[11] Gerasimenko N.I., The inverse scattering problem on a noncompact graph, Theoret. and Math. Phys., 1988, 75(2), 460–470 http://dx.doi.org/10.1007/BF01017484

[12] Kottos T., Smilansky U., Quantum chaos on graphs, Phys. Rev. Lett., 1997, 79(24), 4794–4797 http://dx.doi.org/10.1103/PhysRevLett.79.4794

[13] Kuchment P., Quantum graphs: I. Some basic structures, Waves in Random and Complex Media, 2004, 14(1), S107–S128 http://dx.doi.org/10.1088/0959-7174/14/1/014

[14] Langese J., Leugering G., Schmidt E.J.P.G., Modeling Analysis and Control of Dynamic Elastic Multi-Link Structures, Systems Control Found. Appl., Birkhäuser, Boston, 1994

[15] Levitan B.M., Inverse Sturm-Liouville Problems, VSP, Zeist, 1987

[16] Levitan B.M., Sargsyan I.S., Introduction to Spectral Theory, Transl. Math. Monogr., 39, American Mathematical Society, Providence, 1975

[17] Marchenko V.A., Sturm-Liouville Operators and Applications, Oper. Theory Adv. Appl., 22, Birkhäuser, Basel, 1986 http://dx.doi.org/10.1007/978-3-0348-5485-6

[18] Marchenko V., Mochizuki K., Trooshin I., Inverse scattering on a graph containing circle, In: Analytic Methods of Analysis and Differential Equations, Minsk, September 13–19, 2006, Camb. Sci. Publ., Cambridge, 2008, 237–243

[19] Montroll E.W., Quantum theory on a network. I. A solvable model whose wavefunctions are elementary functions, J. Math. Phys., 1970, 11(2), 635–648 http://dx.doi.org/10.1063/1.1665178

[20] Naimark M.A., Linear Differential Operators, 2nd ed., Nauka, Moscow, 1969 (in Russian) | Zbl 0057.07102

[21] Pokornyi Yu.V., Beloglazova T.V., Dikareva E.V., Perlovskaya T.V., Green function for a locally interacting system of ordinary equations of different orders, Math. Notes, 2003, 74(1–2), 141–143 http://dx.doi.org/10.1023/A:1025087604412 | Zbl 1063.34024

[22] Pokornyi Yu.V., Borovskikh A.V., Differential equations on networks (geometric graphs), J. Math. Sci. (N.Y.), 2004, 119(6), 691–718 http://dx.doi.org/10.1023/B:JOTH.0000012752.77290.fa | Zbl 1083.34024

[23] Pokornyi Yu.V., Pryadiev V.L., The qualitative Sturm-Liouville theory on spatial networks, J. Math. Sci. (N.Y.), 2004, 119(6), 788–835 http://dx.doi.org/10.1023/B:JOTH.0000012756.25200.56 | Zbl 1088.34020

[24] Ramm A.G., Inverse Problems, Math. Anal. Tech. Appl. Eng., Springer, New York, 2005 | Zbl 1162.35384

[25] Yang C.-F., Inverse spectral problems for the Sturm-Liouville operators on a d-star graph, J. Math. Anal. Appl., 2010, 365(2), 742–749 http://dx.doi.org/10.1016/j.jmaa.2009.12.016 | Zbl 1195.34023

[26] Yurko V.A., Inverse Spectral Problems for Differential Operators and their Applications, Anal. Methods Spec. Funct., 2, Gordon and Breach, Amsterdam, 2000 | Zbl 0952.34001

[27] Yurko V., Method of Spectral Mappings in the Inverse Problem Theory, Inverse Ill-Posed Probl. Ser., VSP, Utrecht, 2002 http://dx.doi.org/10.1515/9783110940961

[28] Yurko V., Inverse spectral problems for Sturm-Liouville operators on graphs, Inverse Problems, 2005, 21(3), 1075–1086 http://dx.doi.org/10.1088/0266-5611/21/3/017

[29] Yurko V.A., An inverse problem for higher order differential operators on star-type graphs, Inverse Problems, 2007, 23(3), 893–903 http://dx.doi.org/10.1088/0266-5611/23/3/003

[30] Yurko V.A., Inverse problems for differential of any order on trees, Math. Notes, 2008, 83(1–2), 125–137 http://dx.doi.org/10.1134/S000143460801015X

[31] Yurko V., Inverse problems for Sturm-Liouville operators on bush-type graphs, Inverse Problems, 2009, 25(10), #105008 http://dx.doi.org/10.1088/0266-5611/25/10/105008 | Zbl 1235.34045

[32] Yurko V., An inverse problem for Sturm-Liouville differential operators on A-graphs, Appl. Math. Lett., 2010, 23(8), 875–879 http://dx.doi.org/10.1016/j.aml.2010.03.026 | Zbl 1192.35190

[33] Yurko V.A., Inverse spectral problems for differential operators on arbitrary compact graphs, J. Inverse Ill-Posed Probl., 2010, 18(3), 245–261 | Zbl 1279.34029

[34] Yurko V.A., Inverse spectral problems for arbitrary order differential operators on noncompact trees, J. Inverse Ill-Posed Probl., 2012, 20(1), 111–131 | Zbl 1279.34030