The jump of the Milnor number of an isolated singularity f 0 is the minimal non-zero difference between the Milnor numbers of f 0 and one of its deformations (f s). We prove that for the singularities in the X 9 singularity class their jumps are equal to 2.
@article{bwmeta1.element.doi-10_2478_s11533-013-0351-4, author = {Szymon Brzostowski and Tadeusz Krasi\'nski}, title = {The jump of the Milnor number in the X 9 singularity class}, journal = {Open Mathematics}, volume = {12}, year = {2014}, pages = {429-435}, zbl = {1286.32014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0351-4} }
Szymon Brzostowski; Tadeusz Krasiński. The jump of the Milnor number in the X 9 singularity class. Open Mathematics, Tome 12 (2014) pp. 429-435. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0351-4/
[1] Arnold V.I., Gusein-Zade S.M., Varchenko A.N., Singularities of Differentiable Maps, I, Monogr. Math., 82, Birkhäuser, Boston, 1985 http://dx.doi.org/10.1007/978-1-4612-5154-5[Crossref]
[2] Bodin A., Jump of Milnor numbers, Bull. Braz. Math. Soc. (N.S.), 2007, 38(3), 389–396 http://dx.doi.org/10.1007/s00574-007-0051-4[Crossref] | Zbl 1131.32015
[3] Ebeling W., Functions of Several Complex Variables and their Singularities, Grad. Stud. Math., 83, American Mathematical Society, Providence, 2007
[4] Greuel G.-M., Lossen C., Shustin E., Introduction to Singularities and Deformations, Springer Monogr. Math., Springer, Berlin, 2007 | Zbl 1125.32013
[5] Gwoździewicz J., Płoski A., Formulae for the singularities at infinity of plane algebraic curves, Univ. Iagel. Acta Math., 2001, 39, 109–133 | Zbl 1015.32026
[6] Gusein-Zade S.M., On singularities from which an A 1 can be split off, Funct. Anal. Appl., 1993, 27(1), 57–59 http://dx.doi.org/10.1007/BF01768670[Crossref]
[7] Kouchnirenko A.G., Polyèdres de Newton et nombres de Milnor, Invent. Math., 1976, 32(1), 1–31 http://dx.doi.org/10.1007/BF01389769[Crossref] | Zbl 0328.32007
[8] Martinet J., Singularities of Smooth Functions and Maps London, Math. Soc. Lecture Note Ser., 58, Cambridge University Press, Cambridge, 1982 | Zbl 0522.58006
[9] Płoski A., Newton polygons and the Łojasiewicz exponent of a holomorphic mapping of C 2, Ann. Polon. Math., 1990, 51, 275–281 | Zbl 0764.32012
[10] Płoski A., Milnor number of a plane curve and Newton polygons, Univ. Iagel. Acta Math., 1999, 37, 75–80 | Zbl 0997.32021
[11] Walewska J., The second jump of Milnor numbers, Demonstratio Math., 2010, 43(2), 361–374 | Zbl 1202.32024
[12] Wall C.T.C., Finite determinacy of smooth map-germs, Bull. London Math. Soc., 1981, 13(6), 481–539 http://dx.doi.org/10.1112/blms/13.6.481[Crossref]