In this paper we prove that, up to a scalar multiple, the determinant is the unique generalized matrix function that preserves the product or remains invariant under similarity. Also, we present a new proof for the known result that, up to a scalar multiple, the ordinary characteristic polynomial is the unique generalized characteristic polynomial for which the Cayley-Hamilton theorem remains true.
@article{bwmeta1.element.doi-10_2478_s11533-013-0347-0, author = {Mohammad Jafari and Ali Madadi}, title = {Generalized matrix functions and determinants}, journal = {Open Mathematics}, volume = {12}, year = {2014}, pages = {464-469}, zbl = {1297.15008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0347-0} }
Mohammad Jafari; Ali Madadi. Generalized matrix functions and determinants. Open Mathematics, Tome 12 (2014) pp. 464-469. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0347-0/
[1] Beasley L.B., Cummings L.J., On the uniqueness of generalized matrix functions, Proc. Amer. Math. Soc., 1983, 87(2), 229–232 http://dx.doi.org/10.1090/S0002-9939-1983-0681826-6[Crossref] | Zbl 0508.15005
[2] Darafsheh M.R., Mallahi K., Pournaki M.R., A note on Cayley-Hamilton theorem for generalized matrix function, Pure Math. Appl., 2000, 11(4), 553–557 | Zbl 0994.15032
[3] Jafari M.H., Madadi A.R., On the equality of generalized matrix functions, Linear Algebra Appl. (in press), DOI: 10.1016/j.laa.2012.04.027 [Crossref] | Zbl 1293.15004
[4] Marcus M., Finite Dimensional Multilinear Algebra, I, Pure Appl. Math., 23, Marcel Dekker, New York, 1973
[5] Merris R., Generalized matrix functions: a research problem, Linear and Multilinear Algebra, 1979/80, 8(1), 83–86 http://dx.doi.org/10.1080/03081087908817302[Crossref]
[6] Merris R., Multilinear Algebra, Algebra Logic Appl., 8, Gordon and Breach, Amsterdam, 1997
[7] Zhang F., Matrix Theory, 2nd ed., Universitext, Springer, New York, 2011 http://dx.doi.org/10.1007/978-1-4614-1099-7[Crossref]