Minkowski’s inequality and sums of squares
Péter Frenkel ; Péter Horváth
Open Mathematics, Tome 12 (2014), p. 510-516 / Harvested from The Polish Digital Mathematics Library

Positive polynomials arising from Muirhead’s inequality, from classical power mean and elementary symmetric mean inequalities and from Minkowski’s inequality can be rewritten as sums of squares.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269410
@article{bwmeta1.element.doi-10_2478_s11533-013-0346-1,
     author = {P\'eter Frenkel and P\'eter Horv\'ath},
     title = {Minkowski's inequality and sums of squares},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {510-516},
     zbl = {06271173},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0346-1}
}
Péter Frenkel; Péter Horváth. Minkowski’s inequality and sums of squares. Open Mathematics, Tome 12 (2014) pp. 510-516. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0346-1/

[1] Caicedo A., Positive polynomials, http://caicedoteaching.wordpress.com/2008/11/11/275-positive-polynomials/

[2] Fidalgo C., Kovacec A., Positive semidefinite diagonal minus tail forms are sums of squares, Math. Z., 2011, 269(3–4), 629–645 http://dx.doi.org/10.1007/s00209-010-0753-y[WoS][Crossref] | Zbl 1271.11045

[3] Fujisawa R., Algebraic means, Proc. Imp. Acad., 1918, 1(5), 159–170 http://dx.doi.org/10.3792/pia/1195582221[Crossref]

[4] Ghasemi M., Marshall M., Lower bounds for polynomials using geometric programming, SIAM J. Optim., 2012, 22(2), 460–473 http://dx.doi.org/10.1137/110836869[Crossref] | Zbl 1272.12004

[5] Hurwitz A., Über den Vergleich des arithmetischen und des geometrischen Mittels, In: Mathematische Werke II: Zahlentheorie, Algebra und Geometrie, Birkhäuser, Basel, 1932, 505–507