Positive polynomials arising from Muirhead’s inequality, from classical power mean and elementary symmetric mean inequalities and from Minkowski’s inequality can be rewritten as sums of squares.
@article{bwmeta1.element.doi-10_2478_s11533-013-0346-1, author = {P\'eter Frenkel and P\'eter Horv\'ath}, title = {Minkowski's inequality and sums of squares}, journal = {Open Mathematics}, volume = {12}, year = {2014}, pages = {510-516}, zbl = {06271173}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0346-1} }
Péter Frenkel; Péter Horváth. Minkowski’s inequality and sums of squares. Open Mathematics, Tome 12 (2014) pp. 510-516. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0346-1/
[1] Caicedo A., Positive polynomials, http://caicedoteaching.wordpress.com/2008/11/11/275-positive-polynomials/
[2] Fidalgo C., Kovacec A., Positive semidefinite diagonal minus tail forms are sums of squares, Math. Z., 2011, 269(3–4), 629–645 http://dx.doi.org/10.1007/s00209-010-0753-y[WoS][Crossref] | Zbl 1271.11045
[3] Fujisawa R., Algebraic means, Proc. Imp. Acad., 1918, 1(5), 159–170 http://dx.doi.org/10.3792/pia/1195582221[Crossref]
[4] Ghasemi M., Marshall M., Lower bounds for polynomials using geometric programming, SIAM J. Optim., 2012, 22(2), 460–473 http://dx.doi.org/10.1137/110836869[Crossref] | Zbl 1272.12004
[5] Hurwitz A., Über den Vergleich des arithmetischen und des geometrischen Mittels, In: Mathematische Werke II: Zahlentheorie, Algebra und Geometrie, Birkhäuser, Basel, 1932, 505–507