We apply Cartan’s method of equivalence to find a Bäcklund autotransformation for the tangent covering of the universal hierarchy equation. The transformation provides a recursion operator for symmetries of this equation.
@article{bwmeta1.element.doi-10_2478_s11533-013-0345-2, author = {Oleg Morozov}, title = {A recursion operator for the universal hierarchy equation via Cartan's method of equivalence}, journal = {Open Mathematics}, volume = {12}, year = {2014}, pages = {271-283}, zbl = {06271181}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0345-2} }
Oleg Morozov. A recursion operator for the universal hierarchy equation via Cartan’s method of equivalence. Open Mathematics, Tome 12 (2014) pp. 271-283. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0345-2/
[1] Bluman G.W., Cole J.D., Similarity Methods for Differential Equations, Appl. Math. Sci., 13, Springer, New York-Heidelberg, 1974 http://dx.doi.org/10.1007/978-1-4612-6394-4 | Zbl 0292.35001
[2] Bocharov A.V., Chetverikov V.N., Duzhin S.V., Khor’kova N.G., Krasil’shchik I.S., Samokhin A.V., Torkhov Yu.N., Verbovetsky A.M., Vinogradov A.M., Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, Transl. Math. Monogr., 182, American Mathematical Society, Providence, 1999
[3] Bryant R.L., Griffiths Ph.A., Characteristic cohomology of differential systems II: Conservation laws for a class of parabolic equations, Duke Math. J., 1995, 78(3), 531–676 http://dx.doi.org/10.1215/S0012-7094-95-07824-7 | Zbl 0853.58005
[4] Cartan É., Sur la structure des groupes infinis de transformations, In: OEuvres Complètes, 2(2), Gauthier-Villars, Paris, 1953, 571–714
[5] Cartan É., Les sous-groupes des groupes continus de transformations, In: OEuvres Complètes, 2(2), Gauthier-Villars, Paris, 1953, 719–856
[6] Cartan É., Les problèmes d’équivalence, In: OEuvres Complètes, 2(2), Gauthier-Villars, Paris, 1953, 1311–1334
[7] Cartan É., La structure des groupes infinis, In: OEuvres Complètes, 2(2), Gauthier-Villars, Paris, 1953, 1335–1384
[8] Fels M., Olver P.J., Moving coframes: I. A practical algorithm, Acta Appl. Math., 1998, 51(2), 161–213 http://dx.doi.org/10.1023/A:1005878210297 | Zbl 0937.53012
[9] Fokas A.S., Symmetries and integrability, Stud. Appl. Math., 1987, 77(3), 253–299 | Zbl 0639.35075
[10] Fokas A.S., Santini P.M., The recursion operator of the Kadomtsev-Petviashvili equation and the squared eigenfunctions of the Schrödinger operator, Stud. Appl. Math., 1986, 75(2), 179–185 | Zbl 0613.35073
[11] Fokas A.S., Santini P.M., Recursion operators and bi-Hamiltonian structures in multidimensions. II, Comm. Math. Phys., 1988, 116(3), 449–474 http://dx.doi.org/10.1007/BF01229203 | Zbl 0706.35129
[12] Fuchssteiner B., Application of hereditary symmetries to nonlinear evolution equations, Nonlinear Anal., 1979, 3(6), 849–862 http://dx.doi.org/10.1016/0362-546X(79)90052-X
[13] Gardner R.B., The Method of Equivalence and its Applications, CBMS-NSF Regional Conf. Ser. in Appl. Math., 58, SIAM, Philadelphia, 1989
[14] Gürses M., Karasu A., Sokolov V.V., On construction of recursion operators from Lax representation, J. Math. Phys., 1999, 40(12), 6473–6490 http://dx.doi.org/10.1063/1.533102 | Zbl 0977.37038
[15] Guthrie G.A., Recursion operators and non-local symmetries, Proc. Roy. Soc. London Ser. A, 1994, 446(1926), 107–114 http://dx.doi.org/10.1098/rspa.1994.0094 | Zbl 0816.47056
[16] Ibragimov N.H., Transformation Groups Applied to Mathematical Physics, Math. Appl. (Soviet Ser.), Reidel, Dordrecht, 1985
[17] Kamran N., Contributions to the Study of the Equivalence Problem of Élie Cartan and its Applications to Partial and Ordinary Differential Equations, Acad. Roy. Belg. Cl. Sci. Mém Collect. 8, 45(7), Brussls, 1989 | Zbl 0721.58001
[18] Krasil’shchik I.S., Kersten P.H.M., Deformations and recursion operators for evolution equations, In: Geometry in Partial Differential Equations, World Scientific, River Edge, 1994, 114–154 http://dx.doi.org/10.1142/9789814354394_0008 | Zbl 0878.35106
[19] Krasil’shchik I.S., Kersten P.H.M., Graded differential equations and their deformations: a computational theory for recursion operators, Acta Appl. Math., 1995, 41(1–3), 167–191 http://dx.doi.org/10.1007/BF00996112
[20] Krasil’shchik I.S., Lychagin V.V., Vinogradov A.M., Geometry of Jet Spaces and Nonlinear Partial Differential Equations, Adv. Stud. Contemp. Math., 1, Gordon and Breach, New York, 1986
[21] Krasil’shchik J., Verbovetsky A., Geometry of jet spaces and integrable systems, J. Geom. Phys., 2011, 61(9), 1633–1674 http://dx.doi.org/10.1016/j.geomphys.2010.10.012 | Zbl 1230.58005
[22] Krasil’shchik I.S., Verbovetsky A.M., Vitolo R., A unified approach to computation of integrable structures, Acta Appl. Math., 2012, 120, 199–218 http://dx.doi.org/10.1007/s10440-012-9699-x | Zbl 1284.37052
[23] Krasil’shchik I.S., Vinogradov A.M., Nonlocal symmetries and the theory of coverings, Acta Appl. Math., 1984, 2(1), 79–86 http://dx.doi.org/10.1007/BF01405492
[24] Martínez Alonso L., Shabat A.B., Energy-dependent potentials revisited: a universal hierarchy of hydrodynamic type, Phys. Lett. A, 2002, 299(4), 359–365 http://dx.doi.org/10.1016/S0375-9601(02)00662-X | Zbl 0996.37072
[25] Martínez Alonso L., Shabat A.B., Hydrodynamic reductions and solutions of the universal hierarchy, Theoret. and Math. Phys., 2004, 140(2), 1073–1085 http://dx.doi.org/10.1023/B:TAMP.0000036538.41884.57 | Zbl 1178.37067
[26] Marvan M., Another look on recursion operators, In: Differential Geometry and Applications, Brno, August 28–September 1, 1995, Masaryk University, Brno, 1996, 393–402 | Zbl 0870.58106
[27] Marvan M., Recursion operator for vacuum Einstein equations with symmetries, Symmetry in Nonlinear Mathematical Physics, Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 50(1,2,3), Natsīonal Akad. Nauk Ukraïni, Kiev, 2004, 179–183 | Zbl 1097.83507
[28] Marvan M., Reducibility of zero curvature representations with application to recursion operators, Acta Appl. Math., 2004, 83(1–2), 39–68 http://dx.doi.org/10.1023/B:ACAP.0000035588.67805.0b | Zbl 1063.37066
[29] Marvan M., On the spectral parameter problem, Acta Appl. Math., 2010, 109(1), 239–255 http://dx.doi.org/10.1007/s10440-009-9450-4 | Zbl 1198.37094
[30] Marvan M., Pobořil M., A recursion operator for the intrinsic generalized sine-Gordon equation, J. Math. Sci. (N.Y.), 2008, 151(4), 3151–3158 http://dx.doi.org/10.1007/s10958-008-9024-4 | Zbl 1149.37324
[31] Marvan M., Sergyeyev A., Recursion operator for the stationary Nizhnik-Veselov-Novikov equation, J. Phys. A, 2003, 36(5), L87–L92 http://dx.doi.org/10.1088/0305-4470/36/5/102 | Zbl 1039.37055
[32] Marvan M., Sergyeyev A., Recursion operators for dispersionless integrable systems in any dimension, Inverse Problems, 2012, 28(2), #025011 http://dx.doi.org/10.1088/0266-5611/28/2/025011 | Zbl 1234.35314
[33] Morozov O.I., Moving coframes and symmetries of differential equations, J. Phys. A, 2002, 35(12), 2965–2977 http://dx.doi.org/10.1088/0305-4470/35/12/317 | Zbl 1040.35003
[34] Morozov O.I., The contact-equivalence problem for linear hyperbolic equations, J. Math. Sci. (N.Y.), 2006, 135(1), 2680–2694 http://dx.doi.org/10.1007/s10958-006-0138-2 | Zbl 1112.35011
[35] Morozov O.I., Contact integrable extensions of symmetry pseudo-groups and coverings of (2+1) dispersionless integrable equations, J. Geom. Phys., 2009, 59(11), 1461–1475 http://dx.doi.org/10.1016/j.geomphys.2009.07.009 | Zbl 1186.58023
[36] Olver P.J., Evolution equations possessing infinitely many symmetries, J. Math. Phys., 1977, 18(6), 1212–1215 http://dx.doi.org/10.1063/1.523393 | Zbl 0348.35024
[37] Olver P.J., Applications of Lie Groups to Differential Equations, 2nd ed., Grad. Texts in Math., 107, Springer, New York, 1993 http://dx.doi.org/10.1007/978-1-4612-4350-2
[38] Olver P.J., Equivalence, Invariants, and Symmetry, Cambridge University Press, Cambridge, 1995 http://dx.doi.org/10.1017/CBO9780511609565
[39] Papachristou C.J., Potential symmetries for self-dual gauge fields, Phys. Lett. A, 1990, 145(5), 250–254 http://dx.doi.org/10.1016/0375-9601(90)90359-V
[40] Papachristou C.J., Harrison B.K., Bäcklund-transformation-related recursion operators: application to self-dual Yang-Mills equation, J. Nonlinear Math. Phys., 2010, 17(1), 35–49 http://dx.doi.org/10.1142/S1402925110000581 | Zbl 1190.35190
[41] Pavlov M.V., Integrable hydrodynamic chains, J. Math. Phys., 2003, 44(9), 4134–4156 http://dx.doi.org/10.1063/1.1597946 | Zbl 1062.37078
[42] Sanders J.A., Wang J.P., On recursion operators, Phys. D, 2001, 149(1–2), 1–10 http://dx.doi.org/10.1016/S0167-2789(00)00188-3 | Zbl 0972.35137
[43] Santini P.M., Fokas A.S., Recursion operators and bi-Hamiltonian structures in multidimensions. I, Comm. Math. Phys., 1988, 115(3), 375–419 http://dx.doi.org/10.1007/BF01218017 | Zbl 0674.35074
[44] Sergyeyev A., On recursion operators and nonlocal symmetries of evolution equations, In: Proceedings of the Seminar on Differential Geometry, Opava, 2000, Math. Publ., 2, Silesian University at Opava, Opava, 2000, 159–173 | Zbl 1096.37503
[45] Stormark O., Lie’s Structural Approach to PDE Systems, Encyclopedia Math. Appl., 80, Cambridge University Press, Cambridge, 2000 http://dx.doi.org/10.1017/CBO9780511569456 | Zbl 0959.35004
[46] Vasilieva M.V., Structure of Infinite Lie Groups of Transformations, Moskov. Gosudartv. Ped. Inst., Moscow, 1972 (in Russian)
[47] Vinogradov A.M., Local symmetries and conservation laws, Acta Appl. Math., 1984, 2(1), 21–78 http://dx.doi.org/10.1007/BF01405491 | Zbl 0534.58005
[48] Wahlquist H.D., Estabrook F.B., Prolongation structures of nonlinear evolution equations, J. Math. Phys., 1975, 16, 1–7 http://dx.doi.org/10.1063/1.522396 | Zbl 0298.35012
[49] Wang J.P., A list of 1+1 dimensional integrable equations and their properties, J. Nonlinear Math. Phys., 2002, 9(Suppl. 1), 213–233 http://dx.doi.org/10.2991/jnmp.2002.9.s1.18
[50] Zakharov V.E., Konopel’chenko B.G., On the theory of recursion operator, Commun. Math. Phys., 1984, 94(4), 483–509 http://dx.doi.org/10.1007/BF01403883