Generalized John disks
Chang-Yu Guo ; Pekka Koskela
Open Mathematics, Tome 12 (2014), p. 349-361 / Harvested from The Polish Digital Mathematics Library

We establish the basic properties of the class of generalized simply connected John domains.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269241
@article{bwmeta1.element.doi-10_2478_s11533-013-0344-3,
     author = {Chang-Yu Guo and Pekka Koskela},
     title = {Generalized John disks},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {349-361},
     zbl = {1294.30037},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0344-3}
}
Chang-Yu Guo; Pekka Koskela. Generalized John disks. Open Mathematics, Tome 12 (2014) pp. 349-361. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0344-3/

[1] Astala K., Iwaniec T., Martin G., Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton Math. Ser., 48, Princeton University Press, Princeton, 2009 | Zbl 1182.30001

[2] Balogh Z., Volberg A., Geometric localization, uniformly John property and separated semihyperbolic dynamics, Ark. Mat., 1996, 34(1), 21–49 http://dx.doi.org/10.1007/BF02559505 | Zbl 0855.30022

[3] Buckley S., Koskela P., Sobolev-Poincaré implies John, Math. Res. Lett., 1995, 2(5), 577–593 http://dx.doi.org/10.4310/MRL.1995.v2.n5.a5 | Zbl 0847.30012

[4] Gehring F.W., Hayman W.K., An inequality in the theory of conformal mapping, J. Math. Pures Appl., 1962, 41, 353–361 | Zbl 0105.28002

[5] Gehring F.W., Palka B.P., Quasiconformally homogeneous domains, J. Analyse Math., 1976, 30, 172–199 http://dx.doi.org/10.1007/BF02786713 | Zbl 0349.30019

[6] Guo C.Y., Generalized quasidisks and conformality II, preprint available at http://arxiv.org/abs/1311.1967

[7] Guo C.Y., Koskela P., Takkinen J., Generalized quasidisks and conformality, Publ. Mat., 2014, 58(1) (in press) | Zbl 1286.30021

[8] Hakobyan H., Herron D.A., Euclidean quasiconvexity, Ann. Acad. Sci. Fenn. Math., 2008, 33(1), 205–230

[9] John F., Rotation and strain, Comm. Pure Appl. Math., 1961, 14(3), 391–413 http://dx.doi.org/10.1002/cpa.3160140316 | Zbl 0102.17404

[10] Koskela P., Lectures on quasiconformal and quasisymmetric mappings, Jyväskylä Lectures in Mathematics, 1, preprint available at http://users.jyu.fi/_pkoskela/quasifinal.pdf

[11] Martio O., John domains, bi-Lipschitz balls and Poincaré inequality, Rev. Roumaine Math. Pures Appl., 1988, 33(1–2), 107–112 | Zbl 0652.30012

[12] Martio O., Sarvas J., Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Math., 1979, 4(2), 383–401 | Zbl 0406.30013

[13] Näkki R., Väisälä J., John disks, Exposition. Math., 1991, 9(1), 3–43

[14] Nieminen T., Generalized mean porosity and dimension, Ann. Acad. Sci. Fenn. Math., 2006, 31(1), 143–172 | Zbl 1099.30009

[15] Pommerenke Ch., Boundary Behaviour of Conformal Maps, Grundlehren Math. Wiss., 299, Springer, Berlin, 1992 http://dx.doi.org/10.1007/978-3-662-02770-7

[16] Reshetnyak Yu.G., Integral representations of differentiable functions in domains with nonsmooth boundary, Siberian Math. J., 1980, 21(6), 833–839 http://dx.doi.org/10.1007/BF00968470 | Zbl 0461.35017

[17] Smith W., Stegenga D.A., Hölder domains and Poincaré domains, Trans. Amer. Math. Soc., 1990, 319(1), 67–100 | Zbl 0707.46028

[18] Takkinen J., Mappings of finite distortion: formation of cusps II, Conform. Geom. Dyn., 2007, 11, 207–218 http://dx.doi.org/10.1090/S1088-4173-07-00170-1 | Zbl 1133.30317