Systems of differential equations with state-dependent delay are considered. The delay dynamically depends on the state, i.e. is governed by an additional differential equation. By applying the time transformations we arrive to constant delay systems and compare the asymptotic properties of the original and transformed systems.
@article{bwmeta1.element.doi-10_2478_s11533-013-0341-6, author = {Alexander Rezounenko}, title = {On time transformations for differential equations with state-dependent delay}, journal = {Open Mathematics}, volume = {12}, year = {2014}, pages = {298-307}, zbl = {1306.34109}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0341-6} }
Alexander Rezounenko. On time transformations for differential equations with state-dependent delay. Open Mathematics, Tome 12 (2014) pp. 298-307. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0341-6/
[1] Arino O., Hadeler K.P., Hbid M.L., Existence of periodic solutions for delay differential equations with state dependent delay, J. Differential Equations, 1998, 144(2), 263–301 http://dx.doi.org/10.1006/jdeq.1997.3378
[2] Brunner H., Maset S., Time transformations for delay differential equations, Discrete Contin. Dyn. Syst., 2009, 25(3), 751–775 http://dx.doi.org/10.3934/dcds.2009.25.751 | Zbl 1187.34093
[3] Brunner H., Maset S., Time transformations for state-dependent delay differential equations, Commun. Pure Appl. Anal., 2010, 9(1), 23–45 http://dx.doi.org/10.3934/cpaa.2010.9.23 | Zbl 1194.34135
[4] Chepyzhov V.V., Vishik M.I., Appendix: Non-authonomous dynamical systems and their attractors, In: Vishik M.I., Asymptotic Behaviour of Solutions of Evolutionary Equations, Lezioni Lincee, Cambridge University Press, Cambridge, 1992
[5] Chueshov I.D., Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Univ. Lektsii Sovrem. Mat., ACTA, Kharkov, 1999 (in Russian); English translation available at http://www.emis.de/monographs/Chueshov/ | Zbl 1100.37046
[6] Diekmann O., van Gils S.A., Verduyn Lunel S.M., Walther H.-O., Delay Equations, Appl. Math. Sci., 110, Springer, New York, 1995 http://dx.doi.org/10.1007/978-1-4612-4206-2
[7] Hale J., Theory of Functional Differential Equations, 2nd ed., Appl. Math. Sci., 3, Springer, Heidelberg-New York, 1977 http://dx.doi.org/10.1007/978-1-4612-9892-2
[8] Hale J.K., Asymptotic Behavior of Dissipative Systems, Math. Surveys Monogr., 25, American Mathematical Society, Providence, 1988 | Zbl 0642.58013
[9] Hartung F., Krisztin T., Walther H.-O., Wu J., Functional differential equations with state-dependent delays: Theory and applications, In: Handbook of Differential Equations: Ordinary Differential Equations, III, Handb. Differ. Equ., Elsevier/North Holland, 2006, Amsterdam, 435–545 http://dx.doi.org/10.1016/S1874-5725(06)80009-X
[10] Krisztin T., A local unstable manifold for differential equations with state-dependent delay, Discrete Contin. Dyn. Syst., 2003, 9(4), 993–1028 http://dx.doi.org/10.3934/dcds.2003.9.993 | Zbl 1048.34123
[11] Mallet-Paret J., Nussbaum R.D., Paraskevopoulos P., Periodic solutions for functional-differential equations with multiple state-dependent time lags, Topol. Methods Nonlinear Anal., 1994, 3(1), 101–162 | Zbl 0808.34080
[12] Rezounenko A.V., Differential equations with discrete state-dependent delay: uniqueness and well-posedness in the space of continuous functions, Nonlinear Anal., 2009, 70(11), 3978–3986 http://dx.doi.org/10.1016/j.na.2008.08.006 | Zbl 1163.35494
[13] Rezounenko A.V., A condition on delay for differential equations with discrete state-dependent delay, J. Math. Anal. Appl., 2012, 385(1), 506–516 http://dx.doi.org/10.1016/j.jmaa.2011.06.070 | Zbl 1242.34136
[14] Temam R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Appl. Math. Sci., 68, Springer, New York, 1988 http://dx.doi.org/10.1007/978-1-4684-0313-8
[15] Vorotnikov V.I., Rumyantsev V.V., Stability and Control with Respect to Part of the Coordinates of the Phase Vector of Dynamical Systems: Theory, Methods and Applications, Nauchnyi Mir, Moscow, 2001 (in Russian) | Zbl 1016.34052
[16] Walther H.-O., The solution manifold and C 1-smoothness for differential equations with state-dependent delay, J. Differential Equations, 2003, 195(1), 46–65 http://dx.doi.org/10.1016/j.jde.2003.07.001 | Zbl 1045.34048