Exponential coordinates and regularity of groupoid heat kernels
Bing So
Open Mathematics, Tome 12 (2014), p. 284-297 / Harvested from The Polish Digital Mathematics Library

We prove that on an asymptotically Euclidean boundary groupoid, the heat kernel of the Laplacian is a smooth groupoid pseudo-differential operator.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269786
@article{bwmeta1.element.doi-10_2478_s11533-013-0338-1,
     author = {Bing So},
     title = {Exponential coordinates and regularity of groupoid heat kernels},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {284-297},
     zbl = {1288.58011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0338-1}
}
Bing So. Exponential coordinates and regularity of groupoid heat kernels. Open Mathematics, Tome 12 (2014) pp. 284-297. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0338-1/

[1] Albin P., A renormalized index theorem for some complete asymptotically regular metrics: the Gauss-Bonnet theorem, Adv. Math., 2007, 213(1), 1–52 http://dx.doi.org/10.1016/j.aim.2006.11.009 | Zbl 1195.58008

[2] Berline N., Getzler E., Vergne M., Heat Kernels and Dirac Operators, Grundlehren Math. Wiss., 298, Springer, Berlin, 1992 http://dx.doi.org/10.1007/978-3-642-58088-8 | Zbl 0744.58001

[3] Fernandes R.L., Lie algebroids, holonomy and characteristic classes, Adv. Math., 2002, 170(1), 119–179 http://dx.doi.org/10.1006/aima.2001.2070 | Zbl 1007.22007

[4] Heitsch J.L., Bismut superconnections and the Chern character for Dirac operators on foliated manifolds, K-Theory, 1995, 9(6), 507–528 http://dx.doi.org/10.1007/BF00998126 | Zbl 0843.58117

[5] Mackenzie K., Lie Groupoids and Lie Algebroids in Differential Geometry, London Math. Soc. Lecture Note Ser., 124, Cambridge University Press, Cambridge, 1987 http://dx.doi.org/10.1017/CBO9780511661839 | Zbl 0683.53029

[6] Melrose R.B., The Atiyah-Patodi-Singer Index Theorem, Res. Notes in Math., 4, A K Peters, Wellesley, 1993 | Zbl 0796.58050

[7] Nistor V., Groupoids and integration of Lie algebroids, J. Math. Soc. Japan, 2000, 52(4), 847–868 http://dx.doi.org/10.2969/jmsj/05240847 | Zbl 0965.58023

[8] Nistor V., Weinstein A., Xu P., Pseudodifferential operators on differential groupoids, Pacific J. Math., 1999, 189(1), 117–152 http://dx.doi.org/10.2140/pjm.1999.189.117 | Zbl 0940.58014

[9] So B.K., Pseudo-Differential Operators, Heat Calculus and Index Theory of Groupoids Satisfying the Lauter-Nistor Condition, PhD thesis, University of Warwick, Warwick, 2010

[10] So B.K., On the full calculus of pseudo-differential operators on boundary groupoids with polynomial growth, Adv. Math., 2013, 237, 1–32 http://dx.doi.org/10.1016/j.aim.2013.01.001 | Zbl 1269.58007