Construction of the mutually orthogonal extraordinary supersquares
Cristian Ghiu ; Iulia Ghiu
Open Mathematics, Tome 12 (2014), p. 337-348 / Harvested from The Polish Digital Mathematics Library

Our purpose is to determine the complete set of mutually orthogonal squares of order d, which are not necessary Latin. In this article, we introduce the concept of supersquare of order d, which is defined with the help of its generating subgroup in 𝔽d×𝔽d . We present a method of construction of the mutually orthogonal supersquares. Further, we investigate the orthogonality of extraordinary supersquares, a special family of squares, whose generating subgroups are extraordinary. The extraordinary subgroups in 𝔽d×𝔽d are of great importance in the field of quantum information processing, especially for the study of mutually unbiased bases. We determine the most general complete sets of mutually orthogonal extraordinary supersquares of order 4, which consist in the so-called Type I and Type II. The well-known case of d − 1 mutually orthogonal Latin squares is only a special case, namely Type I.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269028
@article{bwmeta1.element.doi-10_2478_s11533-013-0337-2,
     author = {Cristian Ghiu and Iulia Ghiu},
     title = {Construction of the mutually orthogonal extraordinary supersquares},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {337-348},
     zbl = {1290.05041},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0337-2}
}
Cristian Ghiu; Iulia Ghiu. Construction of the mutually orthogonal extraordinary supersquares. Open Mathematics, Tome 12 (2014) pp. 337-348. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0337-2/

[1] Aly Ahmed S.A.A., Quantum Error Control Codes, PhD thesis, Texas A&M University, 2008

[2] Asplund J., Keranen M.S., Mutually orthogonal equitable Latin rectangles, Discrete Math., 2011, 311(12), 1015–1033 http://dx.doi.org/10.1016/j.disc.2011.03.003 | Zbl 1216.05008

[3] Bandyopadhyay S., Boykin P.O., Roychowdhury V., Vatan V., A new proof for the existence of mutually unbiased bases, Algorithmica, 2002, 34(4), 512–528 http://dx.doi.org/10.1007/s00453-002-0980-7 | Zbl 1012.68069

[4] Bose R.C., Shrikhande S.S., On the construction of sets of mutually orthogonal Latin squares and the falsity of a conjecture of Euler, Trans. Amer. Math. Soc., 1960, 95(2), 191–209 http://dx.doi.org/10.1090/S0002-9947-1960-0111695-3 | Zbl 0093.31904

[5] Ghiu I., A new method of construction of all sets of mutually unbiased bases for two-qubit systems, J. Phys. Conf. Ser., 2012, 338, #012008

[6] Ghiu I., Generation of all sets of mutually unbiased bases for three-qubit systems, Phys. Scr., 2013, T153, #014027

[7] Hall J.L., Rao A., Mutually orthogonal Latin squares from the inner products of vectors in mutually unbiased bases, J. Phys. A, 2010, 43(13), #135302 http://dx.doi.org/10.1088/1751-8113/43/13/135302 | Zbl 1188.81034

[8] Hayashi A., Horibe M., Hashimoto T., Mean king’s problem with mutually unbiased bases and orthogonal Latin squares, Phys. Rev. A, 2005, 71(5), #052331 | Zbl 1227.81188

[9] Huczynska S., Mullen G.L., Frequency permutation arrays, J. Combin. Des., 2006, 14(6), 463–478 http://dx.doi.org/10.1002/jcd.20096 | Zbl 1110.05016

[10] Keedwell A.D., Mullen G.L., Sets of partially orthogonal Latin squares and projective planes, Discrete Math., 2004, 288(1–3), 49–60 http://dx.doi.org/10.1016/j.disc.2004.04.014 | Zbl 1056.05026

[11] Khanban A.A., Mahdian M., Mahmoodian E.S., A linear algebraic approach to orthogonal arrays and Latin squares, Ars Combin., 2012, 105, 3–13 | Zbl 1274.05049

[12] Kim K., Prasanna Kumar V.K., Perfect Latin squares and parallel array access, In: The 16th Annual International Symposium on Computer Architecture, Jerusalem, May 28–June 1, 1989, IEEE Computer Society Press, Washington-Los Alamitos-Brussels-Tokyo, 1989, 372–379

[13] Klimov A.B., Romero J.L., Björk G., Sánchez-Soto L.L., Geometrical approach to mutually unbiased bases, J. Phys. A, 2007, 40(14), 3987–3998 http://dx.doi.org/10.1088/1751-8113/40/14/014 | Zbl 1111.81037

[14] Laywine C.F., Mullen G.L., Generalizations of Bose’s equivalence between complete sets of mutually orthogonal Latin squares and affine planes, J. Combin. Theory Ser. A, 1992, 61(1), 13–35 http://dx.doi.org/10.1016/0097-3165(92)90050-5 | Zbl 0760.05011

[15] Laywine C.F., Mullen G.L., Discrete Mathematics Using Latin Squares, Wiley-Intersci. Ser. Discrete Math. Optim., John Wiley & Sons, 1998

[16] Paterek T., Dakic B., Brukner Č., Mutually unbiased bases, orthogonal Latin squares, and hidden-variable models, Phys. Rev. A, 2009, 79(1), #012109

[17] Paterek T., Pawłowski M., Grassl M., Brukner Č., On the connection between mutually unbiased bases and orthogonal Latin squares, Phys. Scr., 2010, T140, #014031