Equations in simple matrix groups: algebra, geometry, arithmetic, dynamics
Tatiana Bandman ; Shelly Garion ; Boris Kunyavskiĭ
Open Mathematics, Tome 12 (2014), p. 175-211 / Harvested from The Polish Digital Mathematics Library

We present a survey of results on word equations in simple groups, as well as their analogues and generalizations, which were obtained over the past decade using various methods: group-theoretic and coming from algebraic and arithmetic geometry, number theory, dynamical systems and computer algebra. Our focus is on interrelations of these machineries which led to numerous spectacular achievements, including solutions of several long-standing problems.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269029
@article{bwmeta1.element.doi-10_2478_s11533-013-0335-4,
     author = {Tatiana Bandman and Shelly Garion and Boris Kunyavski\u\i },
     title = {Equations in simple matrix groups: algebra, geometry, arithmetic, dynamics},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {175-211},
     zbl = {1294.20056},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0335-4}
}
Tatiana Bandman; Shelly Garion; Boris Kunyavskiĭ. Equations in simple matrix groups: algebra, geometry, arithmetic, dynamics. Open Mathematics, Tome 12 (2014) pp. 175-211. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0335-4/

[1] Abért M., On the probability of satisfying a word in a group, J. Group Theory, 2006, 5), 685–694 | Zbl 1130.20052

[2] Adolphson A., Sperber S., On the degree of the L-functions associated with an exponential sum, Compositio Math., 1988, 68(2), 125–159 | Zbl 0665.12022

[3] Amitsur S.A., The T-ideals of the free ring, J. London Math. Soc., 1955, 30(4), 470–475 | Zbl 0064.26506

[4] Arzhantsev I.V., Petravchuk A.P., Closed polynomials and saturated subalgebras of polynomial algebras, Ukrainian Math. J., 2007, 59(12), 1783–1790 | Zbl 1164.13302

[5] Arzhantseva G.N., Ol’shanskii A.Yu., Generality of the class of groups in which subgroups with a lesser number of generators are free, Math. Notes, 1996, 59(3–4), 350–355

[6] Baer R., Engelsche Elemente Noetherscher Gruppen, Math. Ann., 1957, 133(3), 256–270

[7] Bandman T., Borovoi M., Grunewald F., Kunyavskiĭ B., Plotkin E., Engel-like characterization of radicals in finite dimensional Lie algebras and finite groups, Manuscripta Math., 2006, 119(4), 465–481 | Zbl 1174.17017

[8] Bandman T., Garion S., Surjectivity and equidistribution of the word xayb on PSL (2; q) and SL (2; q), Internat. J. Algebra Comput., 2012, 22(2), #1250017 | Zbl 1255.20010

[9] Bandman T., Garion S., Grunewald F., On the surjectivity of Engel words on PSL (2; q), Groups Geom. Dyn., 2012, 6(3), 409–439 | Zbl 1261.14010

[10] Bandman T., Gordeev N., Kunyavskiĭ B., Plotkin E., Equations in simple Lie algebras, J. Algebra, 2012, 355, 67–79 | Zbl 1297.17003

[11] Bandman T., Greuel G.-M., Grunewald F., Kunyavskiĭ B., Pfister G., Plotkin E., Two-variable identities for finite solvable groups, C. R. Acad. Sci. Paris, 2003, 337(9), 581–586 | Zbl 1047.20014

[12] Bandman T., Greuel G.-M., Grunewald F., Kunyavskiĭ B., Pfister G., Plotkin E., Identities for finite solvable groups and equations in finite simple groups, Compos. Math., 2006, 142(3), 734–764 | Zbl 1112.20016

[13] Bandman T., Grunewald F., Kunyavskiĭ B., Geometry and arithmetic of verbal dynamical systems on simple groups, Groups Geom. Dyn., 2010, 4(4), 607–655 | Zbl 1276.14037

[14] Bandman T., Kunyavskiĭ B., Criteria for equidistribution of solutions of word equations in SL (2), J. Algebra, 2013, 382, 282–302 | Zbl 1292.20049

[15] Blanc J., Groupes de Cremona, connexité et simplicité, Ann. Sci. Éc. Norm. Supér., 2010, 43(2), 357–364

[16] Bodin A., Dèbes P., Najib S., Indecomposable polynomials and their spectrum, Acta Arith., 2009, 139(1), 79–100 | Zbl 1228.12002

[17] Borel A., On free subgroups of semisimple groups, Enseign. Math., 1983, 29(1–2), 151–164 | Zbl 0533.22009

[18] Borisov A., Sapir M., Polynomial maps over finite fields and residual finiteness of mapping tori of group endomorphisms, Invent. Math., 2005, 160(2), 341–356 | Zbl 1083.14023

[19] Borisov A., Sapir M., Polynomial maps over p-adics and redisual properties of mapping tori of group endomorphisms, Int. Math. Res. Not. IMRN, 2009, 16, 3002–3015 | Zbl 1183.20031

[20] Bray J.N., Wilson J.S., Wilson R.A., A characterization of finite soluble groups by laws in two variables, Bull. London Math. Soc., 2005, 37(2), 179–186 | Zbl 1075.20008

[21] Breuillard E., Green B., Guralnick R., Tao T., Strongly dense free subgroups of semisimple algebraic groups, Israel J. Math., 2012, 192(1), 347–379 | Zbl 1266.20060

[22] Cantat S., Lamy S., Normal subgroups in the Cremona group, Acta Math., 2013, 210(1), 31–94 | Zbl 1278.14017

[23] Cargo D.P., de Launey W., Liebeck M.W., Stafford R.M., Short two-variable identities for finite groups, J. Group Theory, 2008, 11(5), 675–690 | Zbl 1162.20021

[24] Casals-Ruiz M., Kazachkov I., On Systems of Equations over Free Partially Commutative Groups, Mem. Amer. Math. Soc., 212(999), American Mathematical Society, Providence, 2011

[25] Connes A., Schwarz A., Matrix Vieta theorem revisited, Lett. Math. Phys., 1997, 39(4), 349–353 | Zbl 0874.15010

[26] Deligne P., Sullivan D., Division algebras and the Hausdorff-Banach-Tarski paradox, Enseign. Math., 1983, 29(1–2), 145–150 | Zbl 0521.57035

[27] Digne F., Michel J., Representations of Finite Groups of Lie Type, London Math. Soc. Stud. Texts, 21, Cambridge University Press, Cambridge, 1991 | Zbl 0815.20014

[28] Dixon J.D., The probability of generating the symmetric group, Math. Z., 1969, 110(3), 199–205 | Zbl 0176.29901

[29] Droste M., Truss J.K., On representing words in the automorphism group of the random graph, J. Group Theory, 2006, 9(6), 815–836 | Zbl 1122.20015

[30] Elkasapy A., Thom A., About Goto’s method showing surjectivity of word maps, preprint available at http://arxiv.org/abs/1207.5596 | Zbl 1320.20033

[31] Ellers E.W., Gordeev N., Gauss decomposition with prescribed semisimple part in classical Chevalley groups, Comm. Algebra, 1994, 22(14), 5935–5950 | Zbl 0821.20028

[32] Ellers E.W., Gordeev N., Gauss decomposition with prescribed semisimple part in Chevalley groups II, Exceptional cases, Comm. Algebra, 1995, 23(8), 3085–3098 | Zbl 0838.20054

[33] Ellers E.W., Gordeev N., Gauss decomposition with prescribed semisimple part in Chevalley groups III, Finite twisted groups, Comm. Algebra, 1996, 24(14), 4447–4475 | Zbl 0887.20022

[34] Ellers E.W., Gordeev N., On the conjectures of J. Thompson and O. Ore, Trans. Amer. Math. Soc., 1998, 350(9), 3657–3671 | Zbl 0910.20007

[35] Etingof P., Gelfand I., Retakh V., Factorization of differential operators, quasideterminants, and nonabelian Toda field equations, Math. Res. Lett., 1997, 4(2–3), 413–425 | Zbl 0959.37054

[36] Formanek E., Central polynomials for matrix rings, J. Algebra, 1972, 23(1), 129–132 | Zbl 0242.15004

[37] Fricke R., Über die Theorie der automorphen Modulgruppen, Nachr. Akad. Wiss. Göttingen, 1896, 91–101

[38] Fricke R., Klein F., Vorlesungen über die Theorie der Automorphen Funktionen, 1 and 2, Teubner, Leipzig, 1897 and 1912

[39] Fuchs D., Schwarz A., Matrix Vieta theorem, In: Lie groups and Lie algebras: E.B. Dynkin’s Seminar, Amer. Math. Soc. Transl. Ser. 2, 169, American Mathematical Society, Providence, 1995, 15–22

[40] Fujiwara K., Rigid geometry, Lefschetz-Verdier trace formula and Deligne’s conjecture, Invent. Math., 1997, 127(3), 489–533 | Zbl 0920.14005

[41] Garion S., Shalev A., Commutator maps, measure preservation, and T-systems, Trans. Amer. Math. Soc., 2009, 361(9), 4631–4651 | Zbl 1182.20015

[42] Gelfand I., Retakh V., Noncommutative Vieta theorem and symmetric functions, In: The Gelfand Mathematical Seminars, 1993–1995, Gelfand Math. Sem., Birkhäuser, Boston, 1996, 93–100 | Zbl 0865.05074

[43] Gelfand I., Retakh V., Quasideterminants I, Selecta Math. (N.S.), 1997, 3(4), 517–546

[44] Gelfand S., On the number of solutions of a quadratic equation, In: Globus: General Mathematical Seminar, 1, Independent University of Moscow, Moscow, 2004, 124–133 (in Russian)

[45] Ghorpade S.R., Lachaud G., Number of solutions of equations over finite fields and a conjecture of Lang and Weil, In: Number Theory and Discrete Mathematics, Chandigarh, October 2–6, 2000, Trends Math., Birkhäuser, Basel, 2002, 269–291 | Zbl 1080.11049

[46] Ghorpade S.R., Lachaud G., Étale cohomology, Lefschetz theorems and number of points of singular varieties over finite fields, Mosc. Math. J., 2002, 2(3), 589–631; 2009, 9 (2), 431–438 | Zbl 1101.14017

[47] Goldman W.M., An exposition of results of Fricke and Vogt, preprint available at http://arxiv.org/abs/math/0402103

[48] Gordeev N., Rehmann U., On multicommutators for simple algebraic groups, J. Algebra, 2001, 245(1), 275–296 | Zbl 0994.20039

[49] Gordon S.R., Associators in simple algebras, Pacific J. Math., 1974, 51(1), 131–141 | Zbl 0348.17010

[50] Gowers W.T., Quasirandom groups, Combin. Probab. Comput., 2008, 17(3), 363–387 | Zbl 1191.20016

[51] Grunewald F., Kunyavskiĭ B., Nikolova D., Plotkin E., Two-variable identities in groups and Lie algebras, J. Math. Sci. (N.Y.), 2003, 116(1), 2972–2981 | Zbl 1069.20012

[52] Grunewald F., Kunyavskiĭ B., Plotkin E., Characterization of solvable groups and solvable radical, Internat. J. Algebra Comput., 2013, 23(5), 1011–1062 | Zbl 1284.20014

[53] Guralnick R., Malle G., Products of conjugacy classes and fixed point spaces, J. Amer. Math. Soc., 2012, 25(1), 77–121 | Zbl 1286.20007

[54] Guralnick R.M., Tiep P.H., Cross characteristic representations of even characteristic symplectic groups, Trans. Amer. Math. Soc., 2004, 356(12), 4969–5023 | Zbl 1062.20013

[55] Guralnick R.M., Tiep P.H., The Waring problem for finite quasisimple groups. II, preprint available at http://arxiv.org/abs/1302.0333 | Zbl 06512679

[56] Horowitz R.D., Characters of free groups represented in the two-dimensional special linear group, Comm. Pure Appl. Math., 1972, 25(6), 635–649 | Zbl 1184.20009

[57] Hrushovski E., The elementary theory of the Frobenius automorphisms, preprint available at http://arxiv.org/abs/math.LO/0406514/

[58] Humphreys J.E., Modular Representations of Finite Groups of Lie Type, London Math. Soc. Lecture Note Ser., 326, Cambridge University Press, Cambridge, 2006 | Zbl 1113.20016

[59] Huppert B., Blackburn N., Finite Groups, III, Grundlehren Math. Wiss., 243, Springer, Berlin-Heidelberg-New York, 1982

[60] Jambor S., Liebeck M.W., O’Brien E.A., Some word maps that are non-surjective on infinitely many finite simple groups, Bull. Lond. Math. Soc., 2013, 45(5), 907–910 | Zbl 1292.20014

[61] Kanel-Belov A., Kunyavskiĭ B., Plotkin E., Word equations in simple groups and polynomial equations in simple algebras, Vestnik St. Petersburg Univ. Math., 2013, 46(1), 3–13 | Zbl 1300.20033

[62] Kanel-Belov A., Malev S., Rowen L., The images of non-commutative polynomials evaluated on 2×2 matrices Proc. Amer. Math. Soc., 2012, 140(2), 465–478 | Zbl 1241.16017

[63] Kantor W.M., Lubotzky A., The probability of generating a finite classical group, Geom. Dedicata, 1990, 36(1), 67–87 | Zbl 0718.20011

[64] Kapovich I., Mapping tori of endomorphisms of free groups, Comm. Algebra, 2000, 28(6), 2895–2917 | Zbl 0953.20035

[65] Kapovich I., Schupp P.E., Random quotients of the modular group are rigid and essentially incompressible, J. Reine Angew. Math., 2009, 628, 91–119 | Zbl 1167.22009

[66] Kassabov M., Nikolov N., Words with few values in finite simple groups, Quart. J. Math. (in press), DOI: 10.1093/qmath/has018 | Zbl 1296.20037

[67] Lang S., Weil A., Number of points of varieties in finite fields, Amer. J. Math., 1954, 76(4), 819–827 | Zbl 0058.27202

[68] Larsen M., Word maps have large image, Israel J. Math., 2004, 139, 149–156 | Zbl 1130.20310

[69] Larsen M.J., Pink R., Finite subgroups of algebraic groups, J. Amer. Math. Soc., 2011, 24(4), 1105–1158 | Zbl 1241.20054

[70] Larsen M., Shalev A., Characters of symmetric groups: sharp bounds and applications, Invent. Math., 2008, 174(3), 645–687 | Zbl 1166.20009

[71] Larsen M., Shalev A., Word maps and Waring type problems, J. Amer. Math. Soc., 2009, 22(2), 437–466 | Zbl 1206.20014

[72] Larsen M., Shalev A., Fibers of word maps and some applications, J. Algebra, 2012, 354, 36–48 | Zbl 1258.20011

[73] Larsen M., Shalev A., Tiep P.H., The Waring problem for finite simple groups, Ann. of Math., 2011, 174(3), 1885–1950 | Zbl 1283.20008

[74] Larsen M., Shalev A., Tiep P.H., Waring problem for finite quasisimple groups, Int. Math. Res. Not. (IMRN), 2013, 10, 2323–2348 | Zbl 1329.20014

[75] Levy M., Word maps with small image in simple groups, preprint available at http://arxiv.org/abs/1206.1206

[76] Levy M., Word maps with small image in almost simple groups and quasisimple groups, preprint available at http://arxiv.org/abs/1301.7188

[77] Lidl R., Mullen G.L., Turnwald G., Dickson Polynomials, Pitman Monogr. Surveys Pure Appl. Math., 65, Longman Scientific & Technical, Harlow, 1993

[78] Lidl R., Niederreiter H., Finite Fields, Encyclopedia Math. Appl., 20, Addison-Wesley, Reading, 1983

[79] Liebeck M.W., O’Brien E.A., Shalev A., Tiep P.H., The Ore conjecture, J. Eur. Math. Soc. (JEMS), 2010, 12(4), 939–1008 | Zbl 1205.20011

[80] Liebeck M.W., O’Brien E.A., Shalev A., Tiep P.H., Commutators in finite quasisimple groups, Bull. Lond. Math. Soc., 2011, 43(6), 1079–1092 | Zbl 1236.20011

[81] Liebeck M.W., O’Brien E.A., Shalev A., Tiep P.H., Products of squares in finite simple groups, Proc. Amer. Math. Soc., 2012, 140(1), 21–33 | Zbl 1262.20013

[82] Liebeck M.W., Shalev A., The probability of generating a finite simple group, Geom. Dedicata, 1995, 56(1), 103–113 | Zbl 0836.20068

[83] Liebeck M.W., Shalev A., Diameters of finite simple groups: sharp bounds and applications, Ann. of Math., 2001, 154(2), 383–406 | Zbl 1003.20014

[84] Liebeck M.W., Shalev A., Fuchsian groups, finite simple groups, and representation varieties, Invent. Math., 2005, 159(2), 317–367 | Zbl 1134.20059

[85] Lubotzky A., Images of word maps in finite simple groups, Glasg. Math. J. (in press), DOI:10.1017/S0017089513000396

[86] Lyndon R.C., Words and infinite permutations, In: Mots, Lang. Raison. Calc., Hermès, Paris, 1990, 143–152

[87] Macbeath A.M., Generators of the linear fractional groups, In: Number Theory, Houston, 1967, American Mathematical Society, Providence, 1969, 14–32

[88] Macpherson D., Tent K., Pseudofinite groups with NIP theory and definability in finite simple groups, In: Groups and Model Theory, Mülheim an der Ruhr, May 30–June 3, 2011, Contemp. Math., 576, American Mathematical Society, Providence, 2012, 255–267 | Zbl 1273.03127

[89] Magnus W., Rings of Fricke characters and automorphisms groups of free groups, Math. Z., 1980, 170(1), 91–102 | Zbl 0433.20033

[90] Magnus W., The uses of 2 by 2 matrices in combinatorial group theory. A survey, Resultate Math., 1981, 4(2), 171–192 | Zbl 0468.20031

[91] Manin Yu.I., Cubic Forms, North-Holland Math. Library, 4, North-Holland, Amsterdam, 1986

[92] Maroli J.A., Representation of tree permutations by words, Proc. Amer. Math. Soc., 1990, 110(4), 859–869 | Zbl 0746.06008

[93] Martinez C., Zelmanov E., Products of powers in finite simple groups, Israel J. Math., 1996, 96(2), 469–479 | Zbl 0890.20013

[94] Myasnikov A., Nikolaev A., Verbal subgroups of hyperbolic groups have infinite width, preprint available at http://arxiv.org/abs/1107.3719 | Zbl 06355585

[95] Myasnikov A.G., Shpilrain V., Automorphic orbits in free groups, J. Algebra, 2003, 269(1), 18–27 | Zbl 1035.20019

[96] Najib S., Une généralisation de l’inégalité de Stein-Lorenzini, J. Algebra, 2005, 292(2), 566–573 | Zbl 1119.13022

[97] Nikolov N., Algebraic properties of profinite groups, preprint available at http://arxiv.org/abs/1108.5130

[98] Nikolov N., Pyber L., Product decompositions of quasirandom groups and a Jordan type theorem, J. Eur. Math. Soc. (JEMS), 2011, 13(4), 1063–1077 | Zbl 1228.20020

[99] Nikolov N., Segal D., A characterization of finite soluble groups, Bull. Lond. Math. Soc., 2007, 39(2), 209–213 | Zbl 1122.20007

[100] Nikolov N., Segal D., Powers in finite groups, Groups Geom. Dyn., 2011, 5(2), 501–507 | Zbl 1243.20036

[101] Nikolov N., Segal D., Generators and commutators in finite groups; abstract quotients of compact groups, Invent. Math., 2012, 190(3), 513–602 | Zbl 1268.20031

[102] Ore O., Some remarks on commutators, Proc. Amer. Math. Soc., 1951, 2(2), 307–314

[103] Platonov V.P., Linear groups with identical relations, Dokl. Akad. Nauk BSSR, 1967, 11, 581–582 (in Russian)

[104] Puder D., Primitive words, free factors and measure preservation, Israel J. Math., 2014 (in press), DOI:10.1007/s11856-013-0055-2 | Zbl 1308.20023

[105] Puder D., Parzanchevski O., Measure preserving words are primitive, preprint available at http://arxiv.org/abs/1202.3269 | Zbl 06394341

[106] Razmyslov Yu.P., A certain problem of Kaplansky, Math. USSR Izv., 1973, 7(3), 479–496 | Zbl 0314.16016

[107] Ribnere E., Sequences of words characterizing finite solvable groups, Monatsh. Math., 2009, 157(4), 387–401 | Zbl 1195.20016

[108] Rosset M., Rosset S., Elements of trace zero that are not commutators, Comm. Algebra, 2000, 28(6), 3059–3072 | Zbl 0954.16021

[109] Saxl J., Wilson J.S., A note on powers in simple groups, Math. Proc. Cambridge Philos. Soc., 1997, 122(1), 91–94 | Zbl 0890.20014

[110] Schul G., Shalev A., Words and mixing times in finite simple groups, Groups Geom. Dyn., 2011, 5(2), 509–527 | Zbl 1245.20075

[111] Segal D., Words: Notes on Verbal Width in Groups, London Math. Soc. Lecture Note Ser., 361, Cambridge University Press, Cambridge, 2009 | Zbl 1198.20001

[112] Serre J.-P., Le groupe de Cremona et ses sous-groupes finis, In: Séminaire Bourbaki, 2008/2009 (997–1011), Astérisque, 2010, 332(1000), 75–100

[113] Shalev A., Commutators, words, conjugacy classes and character methods, Turkish J. Math., 2007, 31(Suppl.), 131–148 | Zbl 1162.20014

[114] Shalev A., Word maps, conjugacy classes, and a noncommutative Waring-type theorem, Ann. of Math., 2009, 170(3), 1383–1416 | Zbl 1203.20013

[115] Shalev A., Applications of some zeta functions in group theory, In: Zeta Functions in Algebra and Geometry, Palma de Mallorca, May 3–7, 2010, Contemp. Math., 566, American Mathematical Society, Providence, 2012, 331–344 | Zbl 1260.20022

[116] Slusky M., Zeros of 2×2 matrix polynomials, Comm. Algebra, 2010, 38(11), 4212–4223 | Zbl 1227.15016

[117] Suzuki M., On a class of doubly transitive groups, Ann. of Math., 1962, 75(1), 105–145 | Zbl 0106.24702

[118] Thom A., Convergent sequences in discrete groups, Canad. Math. Bull., 2013, 56(2), 424–433 | Zbl 1276.54028

[119] Thompson J.G., Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc., 1968, 74(3), 383–437 | Zbl 0159.30804

[120] Thompson R.C., Commutators in the special and general linear groups, Trans. Amer. Math. Soc., 1961, 101(1), 16–33 | Zbl 0109.26002

[121] Tiep P.H., Zalesskii A.E., Some characterizations of the Weil representations of the symplectic and unitary groups, J. Algebra, 1997, 192(1), 130–165 | Zbl 0877.20030

[122] Tits J., Free subgroups in linear groups, J. Algebra, 1972, 20(2), 250–270 | Zbl 0236.20032

[123] Varshavsky Ya., Lefschetz-Verdier trace formula and a generalization of a theorem of Fujiwara, Geom. Funct. Anal., 2007, 17(1), 271–319 | Zbl 1131.14019

[124] Vogt H., Sur les invariants fundamentaux des equations différentielles linéaires du second ordre, Ann. Sci. École Norm. Supér., 1889, 6(Suppl.), 3–70 | Zbl 21.0314.01

[125] Wan D., A p-adic lifting and its application to permutation polynomials, In: Finite Fields, Coding Theory, and Advances in Communications and Computing, Las Vegas, August 7–10, 1991, Lecture Notes in Pure and Appl. Math., 141, Marcel Dekker, New York, 1993, 209–216

[126] Wilson J.S., Characterization of the soluble radical by a sequence of words, J. Algebra, 2011, 326, 286–289 | Zbl 1243.20029

[127] Zelmanov E.I., On the restricted Burnside problem, In: Proceedings of the International Congress of Mathematicians, Kyoto, August 21–29, 1990, Mathematical Society of Japan, Tokyo, 1991, 395–402 | Zbl 0771.20014

[128] Zorn M., Nilpotency of finite groups, Bull. Amer. Math. Soc., 1936, 42(7), 485–486 | Zbl 62.0088.10