Integrable systems and group actions
Eva Miranda
Open Mathematics, Tome 12 (2014), p. 240-270 / Harvested from The Polish Digital Mathematics Library

The main purpose of this paper is to present in a unified approach to different results concerning group actions and integrable systems in symplectic, Poisson and contact manifolds. Rigidity problems for integrable systems in these manifolds will be explored from this perspective.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269684
@article{bwmeta1.element.doi-10_2478_s11533-013-0333-6,
     author = {Eva Miranda},
     title = {Integrable systems and group actions},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {240-270},
     zbl = {1288.53077},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0333-6}
}
Eva Miranda. Integrable systems and group actions. Open Mathematics, Tome 12 (2014) pp. 240-270. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0333-6/

[1] Albouy A., Projective dynamics and classical gravitation, Regul. Chaotic Dyn., 2008, 13(6), 525–542 http://dx.doi.org/10.1134/S156035470806004X | Zbl 1229.70031

[2] Arnol’d V.I., Mathematical Methods of Classical Mechanics, Grad. Texts in Math., 60, Springer, New York-Heidelberg, 1978 http://dx.doi.org/10.1007/978-1-4757-1693-1

[3] Banyaga A., The geometry surrounding the Arnold-Liouville theorem, In: Advances in Geometry, Progr. Math., 172, Birkhäuser, Boston, 1999 | Zbl 0933.53035

[4] Banyaga A., Molino P., Géométrie des formes de contact complètement intégrables de type toriques, In: Séminaire Gaston Darboux de Géométrie et Topologie Différentielle, 1991–1992, Montpellier, Université Montpellier II, Montpellier, 1993, 1–25

[5] Bolsinov A.V., Jovanovic B., Noncommutative integrability, moment map and geodesic flows, Ann. Global Anal. Geom., 2003, 23(4), 305–322 http://dx.doi.org/10.1023/A:1023023300665 | Zbl 1022.37038

[6] Bolsinov A.V., Matveev V.S., Singularities of momentum maps of integrable Hamiltonian systems with two degrees of freedom, J. Math. Sci. (New York), 1999, 94(4), 1477–1500 http://dx.doi.org/10.1007/BF02365198

[7] Chaperon M., Quelques outils de la théorie des actions différentiables, In: Third Schnepfenried Geometry Conference, 1, Schnepfenried, May 10–15, 1982, Astérisque, 107–108, Soc. Math. France, Paris, 1983, 259–275

[8] Chaperon M., Normalisation of the smooth focus-focus: a simple proof, Acta Math. Vietnam., 2013, 38(1), 3–9 http://dx.doi.org/10.1007/s40306-012-0003-y | Zbl 1273.34043

[9] Chevalley C., Eilenberg S., Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc., 1948, 63(1), 85–124 http://dx.doi.org/10.1090/S0002-9947-1948-0024908-8 | Zbl 0031.24803

[10] Colin de Verdière Y., Singular Lagrangian manifolds and semiclassical analysis, Duke Math. J., 2003, 116(2), 263–298 http://dx.doi.org/10.1215/S0012-7094-03-11623-3 | Zbl 1074.53066

[11] Colin de Verdière Y., Vey J., Le lemme de Morse isochore, Topology, 1979, 18(4), 283–293 http://dx.doi.org/10.1016/0040-9383(79)90019-3

[12] Colin de Verdière Y., Vũ Ngoc S., Singular Bohr-Sommerfeld rules for 2D integrable systems, Ann. Sci. Ècole Norm. Sup., 2003, 36(1), 1–55 | Zbl 1028.81026

[13] Conn J.F., Normal forms for smooth Poisson structures, Ann. of Math., 1985, 121(3), 565–593 http://dx.doi.org/10.2307/1971210 | Zbl 0592.58025

[14] Currás-Bosch C., Miranda E., Symplectic linearization of singular Lagrangian foliations in M 4, Differential Geom. Appl., 2003, 18(2), 195–205 http://dx.doi.org/10.1016/S0926-2245(02)00147-X | Zbl 1040.53035

[15] Delzant T., Hamiltoniens périodiques et images convexes de l’application moment, Bull. Soc. Math. France, 1988, 116(3), 315–339 | Zbl 0676.58029

[16] Dufour J.-P., Molino P., Toulet A., Classification des systèmes intégrables en dimension 2 et invariants des modèles de Fomenko, C. R. Acad. Sci. Paris Sér. I Math., 1994, 318(10), 949–952 | Zbl 0808.58025

[17] Duistermaat J.J., On global action-angle coordinates, Comm. Pure Appl. Math., 1980, 33(6), 687–706 http://dx.doi.org/10.1002/cpa.3160330602 | Zbl 0439.58014

[18] Eliasson L.H., Normal Forms for Hamiltonian Systems with Poisson Commuting Integrals, PhD thesis, University of Stockholm, 1984 | Zbl 0702.58024

[19] Eliasson L.H., Normal forms for Hamiltonian systems with Poisson commuting integrals - elliptic case, Comment. Math. Helv., 1990, 65, 4–35 http://dx.doi.org/10.1007/BF02566590 | Zbl 0702.58024

[20] Fomenko A.T., Topological classification of all integrable Hamiltonian differential equations of general type with two degrees of freedom, In: The Geometry of Hamiltonian Systems, Berkeley, June 5–16, 1989, Math. Sci. Res. Inst. Publ., 22, Springer, New York, 1991, 131–339 http://dx.doi.org/10.1007/978-1-4613-9725-0_10

[21] Geiges G., Contact geometry, In: Handbook of Differential Geometry, II, Elsevier/North-Holland, Amsterdam, 2006, 315–382 http://dx.doi.org/10.1016/S1874-5741(06)80008-7 | Zbl 1147.53068

[22] Gray J.W., Some global properties of contact structures, Ann. of Math., 1959, 69(2), 421–450 http://dx.doi.org/10.2307/1970192 | Zbl 0092.39301

[23] Guillemin V., Ginzburg V., Karshon Y., Moment Maps, Cobordisms, and Hamiltonian Group Actions, Math. Surveys Monogr., 98, American Mathematical Society, Providence, 2004 | Zbl 1197.53002

[24] Guillemin V., Miranda E., Pires A.R., Codimension one symplectic foliations and regular Poisson structures, Bull. Braz. Math. Soc. (N.S.), 2011, 42(4), 607–623 http://dx.doi.org/10.1007/s00574-011-0031-6 | Zbl 1244.53093

[25] Guillemin V., Miranda E., Pires A.R., Symplectic and Poisson geometry on b-manifolds, preprint available at http://arxiv.org/abs/1206.2020 | Zbl 1296.53159

[26] Guillemin V., Miranda E., Pires A.R., Scott G., Toric actions on b-symplectic manifolds, preprint available at http://arxiv.org/abs/1309.1897 | Zbl 1333.53115

[27] Guillemin V., Schaeffer D., On a certain class of Fuchsian partial differential equations, Duke Math. J., 1977, 44(1), 157–199 http://dx.doi.org/10.1215/S0012-7094-77-04408-8 | Zbl 0356.35080

[28] Guillemin V.W., Sternberg S., Remarks on a paper of Hermann, Trans. Amer. Math. Soc., 1968, 130(1), 110–116 http://dx.doi.org/10.1090/S0002-9947-1968-0217226-9 | Zbl 0155.05701

[29] Guillemin V., Sternberg S., The Gel’fand-Cetlin system and quantization of the complex flag manifolds, J. Funct. Anal., 1983, 52(1), 106–128 http://dx.doi.org/10.1016/0022-1236(83)90092-7 | Zbl 0522.58021

[30] Hamilton M.D., Miranda E., Geometric quantization of integrable systems with hyperbolic singularities, Ann. Inst. Fourier (Grenoble), 2010, 60(1), 51–85 http://dx.doi.org/10.5802/aif.2517 | Zbl 1191.53058

[31] Ito H., Action-angle coordinates at singularities for analytic integrable systems, Math. Z., 1991, 206(3), 363–407 http://dx.doi.org/10.1007/BF02571351 | Zbl 0707.58026

[32] Karshon Y., Tolman S., Centered complexity one Hamiltonian torus actions, Trans. Amer. Math. Soc., 2001, 353(12), 4831–4861 http://dx.doi.org/10.1090/S0002-9947-01-02799-4 | Zbl 0992.53062

[33] Khesin B., Tabaschnikov S., Contact complete integrability, Regul. Chaotic Dyn., 2010, 15(4–5), 504–520 http://dx.doi.org/10.1134/S1560354710040076

[34] Knörrer H., Geodesics on quadrics and a mechanical problem of C. Neumann, J. Reine Angew. Math., 1982, 334, 69–78

[35] Kostant B., On the definition of quantization, In: Géométrie Symplectique et Physique Mathématique, Colloq. Internat. CNRS, 237, Éditions Centre Nat. Recherche Sci., Paris, 1975, 187–210

[36] Kruglikov B.S., Matveev V.S., Vanishing of the entropy pseudonorm for certain integrable systems, Electron. Res. Announc. Amer. Math. Soc., 2006, 12, 19–28 http://dx.doi.org/10.1090/S1079-6762-06-00156-9 | Zbl 1186.37067

[37] Laurent-Gengoux C., Miranda E., Coupling symmetries with Poisson structures, Acta Math. Vietnam., 2013, 38(1), 21–32 http://dx.doi.org/10.1007/s40306-013-0008-1 | Zbl 1271.53074

[38] Laurent-Gengoux C., Miranda E., Splitting theorem and integrable systems in Poisson manifolds (in preparation) | Zbl 1222.53087

[39] Laurent-Gengoux C., Miranda E., Vanhaecke P., Action-angle coordinates for integrable systems on Poisson manifolds, Int. Math. Res. Not. IMRN, 2011, 8, 1839–1869 | Zbl 1222.53087

[40] Lerman E., Contact toric manifolds, J. Symplectic Geom., 2003, 1(4), 785–828 http://dx.doi.org/10.4310/JSG.2001.v1.n4.a6 | Zbl 1079.53118

[41] Lerman E., Tolman S., Hamiltonian torus actions on symplectic orbifolds and toric varieties, Trans. Amer. Math. Soc., 1997, 349(10), 4201–4230 http://dx.doi.org/10.1090/S0002-9947-97-01821-7 | Zbl 0897.58016

[42] Libermann P., Legendre foliations on contact manifolds, Differential Geom. Appl., 1991, 1(1), 57–76 http://dx.doi.org/10.1016/0926-2245(91)90022-2

[43] Liouville J., Note sur l’intégration des équations différentielles de la dynamique, J. Math. Pures Appl., 1855, 20, 137–138

[44] Lutz R., Sur la géométrie des structures de contact invariantes, Ann. Inst. Fourier (Grenoble), 1979, 29(1), 283–306 http://dx.doi.org/10.5802/aif.739 | Zbl 0379.53011

[45] Matveev V.S., Integrable Hamiltonian systems with two degrees of freedom. Topological structure of saturated neighborhoods of points of focus-focus and saddle-saddle types, Sb. Math., 1996, 187(4), 495–524 http://dx.doi.org/10.1070/SM1996v187n04ABEH000122 | Zbl 0871.58045

[46] Mineur H., Réduction des systèmes mécaniques à n degrés de liberté admettant n intégrales premières uniformes en involution aux systèmes à variable séparées, J. Math. Pures Appl., 1936, 15, 385–389 | Zbl 62.1513.02

[47] Mineur H., Sur les systèmes mécaniques dans lesquels figurent des paramètres fonctions du temps. Étude des systèmes admettant n intégrales premieres uniformes en involution. Extension à ces systèmes des conditions de quantification de Bohr-Sommerfeld, Le Journal de l’École Polytechnique, 1937, 143, 237–270 | Zbl 0017.04105

[48] Miranda E., On Symplectic Linearization of Singular Lagrangian Foliations, PhD thesis, Universitat de Barcelona, 2003 | Zbl 1040.53035

[49] Miranda E., A normal form theorem for integrable systems on contact manifolds, In: Proceedings of XIII Fall Workshop on Geometry and Physics, Murcia, September 20–22, 2004, Publ. R. Soc. Mat. Esp., 9, Real Sociedad Matemàtica Española, Madrid, 2005, 240–246

[50] Miranda E., Some rigidity results for symplectic and Poisson group actions, In: XV International Workshop on Geometry and Physics, Puerto de la Cruz, September 11–16, 2006, Publ. R. Soc. Mat. Esp., 11, Real Sociedad Matemàtica Española, Madrid, 2007, 177–183

[51] Miranda E., From action-angle coordinates to geometric quantization: a 30 minute round-trip, In: Geometric Quantization in the Non-Compact Setting, Oberwolfach, February 13–19, 2011, Oberwolfach Rep., 2011, 8(1), 425–521

[52] Miranda E., Symplectic linearization of semisimple Lie algebra actions, manuscript

[53] Miranda E., Symplectic equivalence of non-degenerate integrable systems (in preparation)

[54] Miranda E., Monnier P., Zung N.T., Rigidity of Hamiltonian actions on Poisson manifolds, Adv. Math., 2012, 229(2), 1136–1179 http://dx.doi.org/10.1016/j.aim.2011.09.013 | Zbl 1232.53071

[55] Miranda E., Vũ Ngoc S., A singular Poincaré lemma, Int. Math. Res. Not., 2005, 1, 27–45 http://dx.doi.org/10.1155/IMRN.2005.27 | Zbl 1078.58007

[56] Miranda E., Zung N.T., Equivariant normal form for nondegenerate singular orbits of integrable Hamiltonian systems, Ann. Sci. École Norm. Sup., 2004, 37(6), 819–839 | Zbl 1068.37041

[57] Miranda E., Zung N.T., A note on equivariant normal forms of Poisson structures, Math. Res. Lett., 2006, 13(5–6), 1001–1012 http://dx.doi.org/10.4310/MRL.2006.v13.n6.a14 | Zbl 1112.53062

[58] Nest R., Tsygan B., Formal deformations of symplectic manifolds with boundary, J. Reine Angew. Math., 1996, 481, 27–54 | Zbl 0866.58038

[59] Palais R.S., On the existence of slices for actions of non-compact Lie groups, Ann. of Math., 1961, 73, 295–323 http://dx.doi.org/10.2307/1970335 | Zbl 0103.01802

[60] Paternain G.P., On the topology of manifolds with completely integrable geodesic flows. II, J. Geom. Phys., 1994, 13(2), 289–298 http://dx.doi.org/10.1016/0393-0440(94)90036-1

[61] Pelayo A., Vũ Ngoc S., Semitoric integrable systems on symplectic 4-manifolds, Invent. Math., 2009, 177(3), 571–597 http://dx.doi.org/10.1007/s00222-009-0190-x | Zbl 1215.53071

[62] Pelayo Á., Vũ Ngoc S., Constructing integrable systems of semitoric type, Acta Math., 2011, 206(1), 93–125 http://dx.doi.org/10.1007/s11511-011-0060-4 | Zbl 1225.53074

[63] Sniatycki J., On cohomology groups appearing in geometric quantization, In: Differential Geometric Methods in Mathematical Physics, Bonn, July 1–4, 1975, Lecture Notes in Math., 570, Springer, Berlin, 1977, 46–66 http://dx.doi.org/10.1007/BFb0087781

[64] Vey J., Sur le lemme de Morse, Invent. Math., 1977, 40(1), 1–9 http://dx.doi.org/10.1007/BF01389858

[65] Vũ Ngoc S., On semi-global invariants for focus-focus singularities, Topology, 2003, 42(2), 365–380 http://dx.doi.org/10.1016/S0040-9383(01)00026-X | Zbl 1012.37041

[66] Vũ Ngoc S., Wacheux C., Smooth normal forms for integrable Hamiltonian systems near a focus-focus singularity, Acta Math. Vietnam., 2013, 38(1), 107–122 http://dx.doi.org/10.1007/s40306-013-0012-5 | Zbl 1303.37018

[67] Weinstein A., Lectures on symplectic manifolds, CBMS Regional Conf. Ser. in Math., 29, American Mathematical Society, Providence, 1977 | Zbl 0406.53031

[68] Weinstein A., The local structure of Poisson manifolds, J. Differential Geom., 1983, 18(3), 523–557 | Zbl 0524.58011

[69] Williamson J., On the algebraic problem concerning the normal forms of linear dynamical systems, Amer. J. Math., 1936, 58(1), 141–163 http://dx.doi.org/10.2307/2371062 | Zbl 63.1290.01

[70] Woodhouse N.M.J., Geometric quantization, 2nd ed., Oxford Math. Monogr., Clarendon Press, Oxford University Press, New York, 1992 | Zbl 0747.58004

[71] Zung N.T., Symplectic topology of integrable Hamiltonian systems I. Arnold-Liouville with singularities, Compositio Math., 1996, 101(2), 179–215 | Zbl 0936.37042

[72] Zung N.T., Symplectic topology of integrable Hamiltonian systems II. Topological classification, Compositio Math., 2003, 138(2), 125–156 http://dx.doi.org/10.1023/A:1026133814607