The paper deals with the following second order Dirichlet boundary value problem with p ∈ ℕ state-dependent impulses: z″(t) = f (t,z(t)) for a.e. t ∈ [0, T], z(0) = z(T) = 0, z′(τ i+) − z′(τ i−) = I i(τ i, z(τ i)), τ i = γ i(z(τ i)), i = 1,..., p. Solvability of this problem is proved under the assumption that there exists a well-ordered couple of lower and upper functions to the corresponding Dirichlet problem without impulses.
@article{bwmeta1.element.doi-10_2478_s11533-013-0324-7, author = {Irena Rach\r unkov\'a and Jan Tome\v cek}, title = {Second order BVPs with state dependent impulses via lower and upper functions}, journal = {Open Mathematics}, volume = {12}, year = {2014}, pages = {128-140}, zbl = {1302.34049}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0324-7} }
Irena Rachůnková; Jan Tomeček. Second order BVPs with state dependent impulses via lower and upper functions. Open Mathematics, Tome 12 (2014) pp. 128-140. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0324-7/
[1] Afonso S.M., Bonotto E.M., Federson M., Schwabik Š., Discontinuous local semiflows for Kurzweil equations leading to LaSalle’s invariance principle for differential systems with impulses at variable times, J. Differential Equations, 2011, 250(7), 2969–3001 http://dx.doi.org/10.1016/j.jde.2011.01.019 | Zbl 1213.34019
[2] Akhmet M.U., On the general problem of stability for impulsive differential equations, J. Math. Anal. Appl., 2003, 288(1), 182–196 http://dx.doi.org/10.1016/j.jmaa.2003.08.001 | Zbl 1047.34094
[3] Akhmetov M.U., Zafer A., Stability of the zero solution of impulsive differential equations by the Lyapunov second method, J. Math. Anal. Appl., 2000, 248(1), 69–82 http://dx.doi.org/10.1006/jmaa.2000.6864
[4] Bainov D., Simeonov P., Impulsive Differential Equations: Periodic Solutions and Applications, Pitman Monogr. Surveys Pure Appl. Math., 66, Longman Scientific & Technical, Harlow, 1993 | Zbl 0815.34001
[5] Bajo I., Liz E., Periodic boundary value problem for first order differential equations with impulses at variable times, J. Math. Anal. Appl., 1996, 204(1), 65–73 http://dx.doi.org/10.1006/jmaa.1996.0424 | Zbl 0876.34020
[6] Belley J.-M., Virgilio M., Periodic Duffing delay equations with state dependent impulses, J. Math. Anal. Appl., 2005, 306(2), 646–662 http://dx.doi.org/10.1016/j.jmaa.2004.10.023 | Zbl 1082.34068
[7] Belley J.-M., Virgilio M., Periodic Liénard-type delay equations with state-dependent impulses, Nonlinear Anal., 2006, 64(3), 568–589 http://dx.doi.org/10.1016/j.na.2005.06.025 | Zbl 1103.34059
[8] Benchohra M., Graef J.R., Ntouyas S.K., Ouahab A., Upper and lower solutions method for impulsive differential inclusions with nonlinear boundary conditions and variable times, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 2005, 12(3–4), 383–396 | Zbl 1085.34007
[9] Benchohra M., Henderson J., Ntouyas S.K., Ouahab A., Impulsive functional differential equations with variable times, Comput. Math. Appl., 2004, 47(10–11), 1659–1665 http://dx.doi.org/10.1016/j.camwa.2004.06.013 | Zbl 1070.34108
[10] Córdova-Lepe F., Pinto M., González-Olivares E., A new class of differential equations with impulses at instants dependent on preceding pulses. Applications to management of renewable resources, Nonlinear Anal. Real World Appl., 2012, 13(5), 2313–2322 http://dx.doi.org/10.1016/j.nonrwa.2012.01.026 | Zbl 1257.34034
[11] Devi J.V., Vatsala A.S., Generalized quasilinearization for an impulsive differential equation with variable moments of impulse, Dynam. Systems Appl., 2003, 12(3–4), 369–382
[12] Domoshnitsky A., Drakhlin M., Litsyn E., Nonoscillation and positivity of solutions to first order state-dependent differential equations with impulses in variable moments, J. Differential Equations, 2006, 228(1), 39–48 http://dx.doi.org/10.1016/j.jde.2006.05.009 | Zbl 1104.34056
[13] Frigon M., O’Regan D., Impulsive differential equations with variable times, Nonlinear Anal., 1996, 26(12), 1913–1922 http://dx.doi.org/10.1016/0362-546X(95)00053-X
[14] Frigon M., O’Regan D., First order impulsive initial and periodic problems with variable moments, J. Math. Anal. Appl., 1999, 233(2), 730–739 http://dx.doi.org/10.1006/jmaa.1999.6336
[15] Frigon M., O’Regan D., Second order Sturm-Liouville BVP’s with impulses at variable times, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 2001, 8(2), 149–159 | Zbl 0996.34015
[16] Gabor G., The existence of viable trajectories in state-dependent impulsive systems, Nonlinear Anal., 2010, 72(9–10), 3828–3836 http://dx.doi.org/10.1016/j.na.2010.01.019
[17] Kaul S., Lakshmikantham V., Leela S., Extremal solutions, comparison principle and stability criteria for impulsive differential equations with variable times, Nonlinear Anal., 1994, 22(10), 1263–1270 http://dx.doi.org/10.1016/0362-546X(94)90109-0 | Zbl 0807.34064
[18] Lakshmikantham V., Bainov D.D., Simeonov P.S., Theory of Impulsive Differential Equations, Ser. Modern Appl. Math., 6, World Scientific, Teaneck, 1989
[19] Lakshmikantham V., Papageorgiou N.S., Vasundhara Devi J., The method of upper and lower solutions and monotone technique for impulsive differential equations with variable moments, Appl. Anal., 1993, 51(1–4), 41–58 http://dx.doi.org/10.1080/00036819308840203 | Zbl 0793.34013
[20] Li Y., Cong F., Lin Z., Boundary value problems for impulsive differential equations, Nonlinear Anal. TMA, 1997, 29(11), 1253–1264 http://dx.doi.org/10.1016/S0362-546X(96)00177-0 | Zbl 0889.34019
[21] Liu L., Sun J., Existence of periodic solution for a harvested system with impulses at variable times, Phys. Lett. A, 2006, 360(1), 105–108 http://dx.doi.org/10.1016/j.physleta.2006.07.080 | Zbl 1236.34017
[22] Rachůnková I., Tomeček J., A new approach to BVPs with state-dependent impulses, Bound. Value Probl., 2013, #22 | Zbl 1287.34019
[23] Samoilenko A.M., Perestyuk N.A., Impulsive Differential Equations, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 14, World Scientific River Edge, 1995
[24] Qi J., Fu X., Existence of limit cycles of impulsive differential equations with impulses at variable times, Nonlinear Anal., 2001, 44(3), 345–353 http://dx.doi.org/10.1016/S0362-546X(99)00268-0 | Zbl 0993.34043
[25] Vatsala A.S., Vasundhara Devi J., Generalized monotone technique for an impulsive differential equation with variable moments of impulse, Nonlinear Stud., 2002, 9(3), 319–330 | Zbl 1022.34005