Left-right noncommutative Poisson algebras
José Casas ; Tamar Datuashvili ; Manuel Ladra
Open Mathematics, Tome 12 (2014), p. 57-78 / Harvested from The Polish Digital Mathematics Library

The notions of left-right noncommutative Poisson algebra (NPlr-algebra) and left-right algebra with bracket AWBlr are introduced. These algebras are special cases of NLP-algebras and algebras with bracket AWB, respectively, studied earlier. An NPlr-algebra is a noncommutative analogue of the classical Poisson algebra. Properties of these new algebras are studied. In the categories AWBlr and NPlr-algebras the notions of actions, representations, centers, actors and crossed modules are described as special cases of the corresponding wellknown notions in categories of groups with operations. The cohomologies of NPlr-algebras and AWBlr (resp. of NPr-algebras and AWBr) are defined and the relations between them and the Hochschild, Quillen and Leibniz cohomologies are detected. The cases P is a free AWBr, the Hochschild or/and Leibniz cohomological dimension of P is ≤ n are considered separately, exhibiting interesting possibilities of representations of the new cohomologies by the well-known ones and relations between the corresponding cohomological dimensions.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269479
@article{bwmeta1.element.doi-10_2478_s11533-013-0321-x,
     author = {Jos\'e Casas and Tamar Datuashvili and Manuel Ladra},
     title = {Left-right noncommutative Poisson algebras},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {57-78},
     zbl = {06271154},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0321-x}
}
José Casas; Tamar Datuashvili; Manuel Ladra. Left-right noncommutative Poisson algebras. Open Mathematics, Tome 12 (2014) pp. 57-78. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0321-x/

[1] Borceux F., Janelidze G., Kelly G.M., Internal object actions, Comment. Math. Univ. Carolin., 2005, 46(2), 235–255 | Zbl 1121.18004

[2] Borceux F., Janelidze G., Kelly G.M., On the representability of actions in a semi-abelian category, Theory Appl. Categ., 2005, 14(11), 244–286 | Zbl 1103.18006

[3] Bourn D., Janelidze G., Centralizers in action accessible categories, Cah. Topol. Géom. Différ. Catég., 2009, 50(3), 211–232 | Zbl 1187.18011

[4] Casas J.M., Datuashvili T., Noncommutative Leibniz-Poisson algebras, Comm. Algebra, 2006, 34(7), 2507–2530 http://dx.doi.org/10.1080/00927870600651091 | Zbl 1136.17003

[5] Casas J.M., Datuashvili T., Ladra M., Actor of a precrossed module, Comm. Algebra, 2009, 37(12), 4516–4541 http://dx.doi.org/10.1080/00927870902829130 | Zbl 1204.18009

[6] Casas J.M., Datuashvili T., Ladra M., Universal strict general actors and actors in categories of interest, Appl. Categ. Structures, 2010, 18(1), 85–114 http://dx.doi.org/10.1007/s10485-008-9166-z | Zbl 1200.18001

[7] Casas J.M., Datuashvili T., Ladra M., Actor of an alternative algebra, preprint available at http://arxiv.org/abs/0910.0550v1 | Zbl 1285.17003

[8] Casas J.M., Datuashvili T., Ladra M., Actors in categories of interest, preprint available at http://arxiv.org/abs/math0702574v2 | Zbl 1200.18001

[9] Casas J.M., Pirashvili T., Algebras with bracket, Manuscripta Math., 2006, 119(1), 1–15 http://dx.doi.org/10.1007/s00229-005-0551-8 | Zbl 1100.18005

[10] Cornish W.H., Amalgamating commutative regular rings, Comment. Math. Univ. Carolin., 1977, 18(3), 423–436 | Zbl 0378.16011

[11] Datuashvili T., Cohomologically trivial internal categories in categories of groups with operations, Appl. Categ. Structures, 1995, 3(3), 221–237 http://dx.doi.org/10.1007/BF00878442 | Zbl 0844.18004

[12] Dotsenko V., Khoroshkin A., Gröbner bases for operads, Duke Math. J., 2010, 153(2), 363–396 http://dx.doi.org/10.1215/00127094-2010-026 | Zbl 1208.18007

[13] Fresse B., Homologie de Quillen pour les algèbres de Poisson, C. R. Acad. Sci. Paris Sér. I Math., 1998, 326(9), 1053–1058 http://dx.doi.org/10.1016/S0764-4442(98)80061-X

[14] Fresse B., Théorie des opérades de Koszul et homologie des algèbres de Poisson, Ann. Math. Blaise Pascal, 2006, 13(2), 237–312 http://dx.doi.org/10.5802/ambp.219

[15] Higgins P.J., Groups with multiple operators, Proc. London Math. Soc., 1956, 6(3), 366–416 http://dx.doi.org/10.1112/plms/s3-6.3.366 | Zbl 0073.01704

[16] Hochschild G., Cohomology and representations of associative algebras, Duke Math. J., 1947, 14(4), 921–948 http://dx.doi.org/10.1215/S0012-7094-47-01473-7 | Zbl 0029.34201

[17] Hoffbeck E., Poincaré-Birkhoff-Witt criterion for Koszul operads, Manuscripta Math., 2010, 131(1–2), 87–110 http://dx.doi.org/10.1007/s00229-009-0303-2 | Zbl 1207.18009

[18] Huebschmann J., Poisson cohomology and quantization, J. Reine Angew. Math., 1990, 408, 57–113

[19] Kanatchikov I.V., On field-theoretic generalizations of a Poisson algebra, Rep. Math. Phys., 1997, 40(2), 225–234 http://dx.doi.org/10.1016/S0034-4877(97)85919-8 | Zbl 0905.58008

[20] Kubo F., Finite-dimensional non-commutative Poisson algebras, J. Pure Appl. Algebra, 1996, 113(3), 307–314 http://dx.doi.org/10.1016/0022-4049(95)00151-4

[21] Kubo F., Non-commutative Poisson algebra structures on affine Kac-Moody algebras, J. Pure Appl. Algebra, 1998, 126(1–3), 267–286 http://dx.doi.org/10.1016/S0022-4049(96)00141-7 | Zbl 0973.17029

[22] Loday J.-L., Cyclic Homology, Grundlehren Math. Wiss., 301, Springer, Berlin, 1992

[23] Loday J.-L., Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math., 1993, 39(3–4), 269–293

[24] Loday J.-L., Algèbres ayant deux opérations associatives (digèbres), C. R. Acad. Sci. Paris Sér. I Math., 1995, 321(2), 141–146

[25] Loday J.-L., Dialgebras, In: Dialgebras and Related Operads, Lecture Notes in Math., 1763, Springer, Berlin, 2001, 7–66 http://dx.doi.org/10.1007/3-540-45328-8_2

[26] Loday J.-L., Pirashvili T., Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann., 1993, 296(1), 139–158 http://dx.doi.org/10.1007/BF01445099 | Zbl 0821.17022

[27] Loday J.-L., Ronco M., Trialgebras and families of polytopes, In: Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-theory, Contemp. Math., 346, American Mathematical Society, Providence, 2004, 369–398 http://dx.doi.org/10.1090/conm/346/06296

[28] Loday J.-L., Vallette B., Algebraic Operads, Grundlehren Math. Wiss., 346, Springer, Heidelberg, 2012 http://dx.doi.org/10.1007/978-3-642-30362-3

[29] Montoli A., Action accessibility for categories of interest, Theory Appl. Categ., 2010, 23(1), 7–21 | Zbl 1307.18015

[30] Orzech G., Obstruction theory in algebraic categories, I, II, J. Pure Appl. Algebra, 1972, 2(4), 287–340 http://dx.doi.org/10.1016/0022-4049(72)90008-4

[31] Porter T., Extensions, crossed modules and internal categories in categories of groups with operations, Proc. Edinburgh Math. Soc., 1987, 30(3), 373–381 http://dx.doi.org/10.1017/S0013091500026766 | Zbl 0595.18006

[32] Quillen D., On the (co-)homology of commutative rings, In: Applications of Categorical Algebra, New York, 1968, American Mathematical Society, Providence, 1970, 65–87

[33] Tong J., Jin Q., Non-commutative Poisson algebra structures on the Lie algebra sonC˜ , Algebra Colloq., 2007, 14(3), 521–536

[34] Xu P., Noncommutative Poisson algebras, Amer. J. Math., 1994, 116(1), 101–125 http://dx.doi.org/10.2307/2374983 | Zbl 0797.58012