Effective lifting of 2-cocycles for Galois cohomology
Thomas Preu
Open Mathematics, Tome 11 (2013), p. 2138-2149 / Harvested from The Polish Digital Mathematics Library

We give explicit formulas for reducing the problem of determining whether a given 2-cocycle is a coboundary and if so finding a lifting 1-cochain to a system of norm equations.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269172
@article{bwmeta1.element.doi-10_2478_s11533-013-0319-4,
     author = {Thomas Preu},
     title = {Effective lifting of 2-cocycles for Galois cohomology},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {2138-2149},
     zbl = {1328.12009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0319-4}
}
Thomas Preu. Effective lifting of 2-cocycles for Galois cohomology. Open Mathematics, Tome 11 (2013) pp. 2138-2149. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0319-4/

[1] Bright M., Swinnerton-Dyer P., Computing the Brauer-Manin obstructions, Math. Proc. Cambridge Philos. Soc., 2004, 137(1), 1–16 http://dx.doi.org/10.1017/S0305004104007571 | Zbl 1057.14022

[2] Brown K.S., Cohomology of Groups, Grad. Texts in Math., 87, Springer, New York-Berlin, 1982 http://dx.doi.org/10.1007/978-1-4684-9327-6

[3] Fesenko I.B., Vostokov S.V., Local Fields and Their Extensions, Transl. Math. Monogr., 121, American Mathematical Society, Providence, 2002 | Zbl 1156.11046

[4] Fieker C., Über Relative Normgleichungen in Algebraischen Zahlkörpern, Dr. Rer. Nat. Dissertation, Technische Universität, Berlin, 1997

[5] Fieker C., Minimizing representations over number fields II: Computations in the Brauer group, J. Algebra, 2009, 322(3), 752–765 http://dx.doi.org/10.1016/j.jalgebra.2009.05.009 | Zbl 1177.20020

[6] Hasse H., Beweis eines Satzes und Widerlegung einer Vermutung über das allgemeine Normenrestsymbol, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1931, 64–69

[7] Hilton P.J., Stammbach U., A Course in Homological Algebra, 2nd ed., Grad. Texts in Math., 4, Springer, New York, 1997 http://dx.doi.org/10.1007/978-1-4419-8566-8 | Zbl 0863.18001

[8] Holt D.F., Cohomology and group extensions in Magma, In: Discovering Mathematics with Magma, Algorithms Comput. Math., 19, Springer, Berlin, 2006, 221–241 http://dx.doi.org/10.1007/978-3-540-37634-7_10 | Zbl 1146.20312

[9] Kresch A., Tschinkel Yu., On the arithmetic of del Pezzo surfaces of degree 2, Proc. London Math. Soc., 2004, 89(3), 545–569 http://dx.doi.org/10.1112/S002461150401490X | Zbl 1075.14019

[10] Kresch A., Tschinkel Yu., Effectivity of Brauer-Manin obstructions, Adv. Math., 2008, 218(1), 1–27 http://dx.doi.org/10.1016/j.aim.2007.11.017 | Zbl 1142.14013

[11] Milne J.S., Étale Cohomology, Princeton Math. Ser., 33, Princeton University Press, Princeton, 1980

[12] Neukirch J., Algebraische Zahlentheorie, Springer, Berlin-Heidelberg, 2007

[13] Reid M., Chapters on algebraic surfaces, In: Complex Algebraic Geometry, Park City, 1993, IAS/Park City Math. Ser., 3, American Mathematical Society, Providence, 1997, 3–159

[14] Serre J.-P., Corps Locaux, Publications de l’Institut de Mathématique de l’Université de Nancago, VIII, Actualités Sci. Indust., 1296, Hermann, Paris, 1962

[15] Shatz S.S., Profinite Groups, Arithmetic, and Geometry, Ann. of Math. Stud., 67, Princeton University Press, Princeton, 1972 | Zbl 0236.12002

[16] Yamamoto K., An explicit formula of the norm residue symbol in a local number field, Sci. Rep. Tokyo Woman’s Christian College, 1972, 24–28, 302–334