We discuss which semisimple locally symmetric spaces admit an AHS-structure invariant under local symmetries. We classify them for all types of AHS-structures and determine possible equivalence classes of such AHS-structures.
@article{bwmeta1.element.doi-10_2478_s11533-013-0318-5, author = {Jan Gregorovi\v c}, title = {Classification of invariant AHS-structures on semisimple locally symmetric spaces}, journal = {Open Mathematics}, volume = {11}, year = {2013}, pages = {2062-2075}, zbl = {1300.53054}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0318-5} }
Jan Gregorovič. Classification of invariant AHS-structures on semisimple locally symmetric spaces. Open Mathematics, Tome 11 (2013) pp. 2062-2075. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0318-5/
[1] Berger M., Les espaces symétriques noncompacts, Ann. Sci. École Norm. Sup., 1957, 74(2), 85–177
[2] Bertram W., The Geometry of Jordan and Lie Structures, Lecture Notes in Math., 1754, Springer, Berlin, 2000 http://dx.doi.org/10.1007/b76884 | Zbl 1014.17024
[3] Čap A., Slovák J., Parabolic Geometries I, Math. Surveys Monogr., 154, American Mathematical Society, Providence, 2009 | Zbl 1183.53002
[4] Gregorovič J., General construction of symmetric parabolic structures, Differential Geom. Appl., 2012, 30(5), 450–476 http://dx.doi.org/10.1016/j.difgeo.2012.06.006 | Zbl 06092689
[5] Zalabová L., Parabolic symmetric spaces, Ann. Global Anal. Geom., 2010, 37(2), 125–141 http://dx.doi.org/10.1007/s10455-009-9177-5 | Zbl 1188.53026