Essential Killing fields of parabolic geometries: projective and conformal structures
Andreas Čap ; Karin Melnick
Open Mathematics, Tome 11 (2013), p. 2053-2061 / Harvested from The Polish Digital Mathematics Library

We use the general theory developed in our article [Čap A., Melnick K., Essential Killing fields of parabolic geometries, Indiana Univ. Math. J. (in press)], in the setting of parabolic geometries to reprove known results on special infinitesimal automorphisms of projective and conformal geometries.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269212
@article{bwmeta1.element.doi-10_2478_s11533-013-0317-6,
     author = {Andreas \v Cap and Karin Melnick},
     title = {Essential Killing fields of parabolic geometries: projective and conformal structures},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {2053-2061},
     zbl = {1286.53017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0317-6}
}
Andreas Čap; Karin Melnick. Essential Killing fields of parabolic geometries: projective and conformal structures. Open Mathematics, Tome 11 (2013) pp. 2053-2061. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0317-6/

[1] Čap A., Melnick K., Essential Killing fields of parabolic geometries, Indiana Univ. Math. J. (in press), preprint availabe at http://arxiv.org/abs/1208.5510 | Zbl 1294.53045

[2] Čap A., Slovák J., Parabolic Geometries I, Math. Surveys Monogr., 154, American Mathematical Society, Providence, 2009 | Zbl 1183.53002

[3] Frances C., Local dynamics of conformal vector fields, Geom. Dedicata, 2012, 158, 35–59 http://dx.doi.org/10.1007/s10711-011-9619-7 | Zbl 1246.53096

[4] Frances C., Melnick K., Formes normales pour les champs conformes pseudo-riemanniens, Bull. Soc. Math. France, 2013, 141(3), 377–421

[5] Nagano T., Ochiai T., On compact Riemannian manifolds admitting essential projective transformations, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 1986, 33(2), 233–246 | Zbl 0645.53022