We discuss the problem of stable conjugacy of finite subgroups of Cremona groups. We compute the stable birational invariant H 1(G, Pic(X)) for cyclic groups of prime order.
@article{bwmeta1.element.doi-10_2478_s11533-013-0314-9, author = {Fedor Bogomolov and Yuri Prokhorov}, title = {On stable conjugacy of finite subgroups of the plane Cremona group, I}, journal = {Open Mathematics}, volume = {11}, year = {2013}, pages = {2099-2105}, zbl = {1286.14016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0314-9} }
Fedor Bogomolov; Yuri Prokhorov. On stable conjugacy of finite subgroups of the plane Cremona group, I. Open Mathematics, Tome 11 (2013) pp. 2099-2105. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0314-9/
[1] Abramovich D., Wang J., Equivariant resolution of singularities in characteristic 0, Math. Res. Lett., 1997, 4(2–3), 427–433 http://dx.doi.org/10.4310/MRL.1997.v4.n3.a11 | Zbl 0906.14005
[2] Artin M., Mumford D., Some elementary examples of unirational varieties which are not rational, Proc. London Math. Soc., 1972, 25(1), 75–95 http://dx.doi.org/10.1112/plms/s3-25.1.75 | Zbl 0244.14017
[3] Bayle L., Beauville A., Birational involutions of P 2, Asian J. Math., 2000, 4(1), 11–17 | Zbl 1055.14012
[4] Beauville A., Blanc J., On Cremona transformations of prime order, C. R. Math. Acad. Sci. Paris, 2004, 339(4), 257–259 http://dx.doi.org/10.1016/j.crma.2004.06.015 | Zbl 1062.14017
[5] Beauville A., Colliot-Thélène J.-L., Sansuc J.-J., Swinnerton-Dyer P., Variétés stablement rationnelles non rationnelles, Ann. of Math., 1985, 121(2), 283–318 http://dx.doi.org/10.2307/1971174 | Zbl 0589.14042
[6] Colliot-Thélène J.-L., Sansuc J.-J., La descente sur les variétés rationnelles. II, Duke Math. J., 1987, 54(2), 375–492 http://dx.doi.org/10.1215/S0012-7094-87-05420-2 | Zbl 0659.14028
[7] Dolgachev I.V., Iskovskikh V.A., Finite subgroups of the plane Cremona group, In: Algebra, Arithmetic, and Geometry: in honor of Yu.I. Manin, I, Progr. Math., 269, Birkhäuser, Boston, 2009, 443–548 http://dx.doi.org/10.1007/978-0-8176-4745-2_11 | Zbl 1219.14015
[8] de Fernex T., On planar Cremona maps of prime order, Nagoya Math. J., 2004, 174, 1–28 | Zbl 1062.14019
[9] Iskovskikh V.A., Minimal models of rational surfaces over arbitrary fields, Math. USSR-Izv., 1980, 14(1), 17–39 (in Russian) http://dx.doi.org/10.1070/IM1980v014n01ABEH001064 | Zbl 0427.14011
[10] Lemire N., Popov V.L., Reichstein Z., Cayley groups, J. Amer. Math. Soc., 2006, 19(4), 921–967 http://dx.doi.org/10.1090/S0894-0347-06-00522-4
[11] Manin Ju.I., Rational surfaces over perfect fields, Inst. Hautes Études Sci. Publ. Math., 1966, 30, 55–97 (in Russian) http://dx.doi.org/10.1007/BF02684356
[12] Moret-Bailly L., Variétés stablement rationnelles non rationnelles (d’après Beauville, Colliot-Thélène, Sansuc et Swinnerton-Dyer), In: Seminar Bourbaki, 1984/85, Astérisque, 1986, 133–134, 223–236
[13] Popov V.L., Some subgroups of the Cremona groups, In: Affine Algebraic Geometry, Osaka, 3–6 March, 2011, World Scientific, Singapore, 2013, 213–242
[14] Serre J.-P., Cohomologie Galoisienne, Cours au Collège de France, 1962–1963, Lecture Notes in Math., 5, Springer, Berlin, 1962/1963
[15] Voskresenskiĭ V.E., Algebraic Tori, Nauka, Moscow, 1977 (in Russian)