The combinatorial derivation and its inverse mapping
Igor Protasov
Open Mathematics, Tome 11 (2013), p. 2176-2181 / Harvested from The Polish Digital Mathematics Library

Let G be a group and P G be the Boolean algebra of all subsets of G. A mapping Δ: P G → P G defined by Δ(A) = {g ∈ G: gA ∩ A is infinite} is called the combinatorial derivation. The mapping Δ can be considered as an analogue of the topological derivation d: P X→ P X, A ↦ A d, where X is a topological space and A d is the set of all limit points of A. We study the behaviour of subsets of G under action of Δ and its inverse mapping ∇. For example, we show that if G is infinite and I is an ideal in P G such that Δ(A) ∈ I and ∇(A) ⊆ I for each A ∈ I then I = P G.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269326
@article{bwmeta1.element.doi-10_2478_s11533-013-0313-x,
     author = {Igor Protasov},
     title = {The combinatorial derivation and its inverse mapping},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {2176-2181},
     zbl = {1300.20001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0313-x}
}
Igor Protasov. The combinatorial derivation and its inverse mapping. Open Mathematics, Tome 11 (2013) pp. 2176-2181. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0313-x/

[1] Banakh T., Lyaskovska N., On thin-complete ideals of subsets of groups, Ukrainian Math. J., 2011, 63(6), 865–879 http://dx.doi.org/10.1007/s11253-011-0549-1 | Zbl 1278.20044

[2] Brown T.K., On locally finite semigroups, Ukrainian Math. J., 1968, 20(6), 631–636 http://dx.doi.org/10.1007/BF01085231 | Zbl 0214.03503

[3] Erde J., A note on combinatorial derivation, preprint available at http://arxiv.org/abs/1210.7622 | Zbl 1301.05364

[4] Hindman N., Strauss D., Algebra in the Stone-Čech Compactification, de Gruyter Exp. Math., 27, Walter de Gruyter, Berlin, 1998 http://dx.doi.org/10.1515/9783110809220 | Zbl 0918.22001

[5] Lutsenko Ie., Thin systems of generators of groups, Algebra Discrete Math., 2010, 9(2), 108–114 | Zbl 1209.20033

[6] Lutsenko Ie., Protasov I.V., Sparse, thin and other subsets of groups, Internat. J. Algebra Comput., 2009, 19(4), 491–510 http://dx.doi.org/10.1142/S0218196709005135 | Zbl 1186.20024

[7] Lutsenko Ie., Protasov I., Thin subsets of balleans, Appl. Gen. Topology, 2010, 11(2), 89–93 | Zbl 1207.54010

[8] Lutsenko Ie., Protasov I.V., Relatively thin and sparse subsets of groups, Ukrainian Math. J., 2011, 63(2), 254–265 http://dx.doi.org/10.1007/s11253-011-0502-3 | Zbl 1258.20027

[9] Protasov I.V., Counting Ω-ideals, Algebra Universalis, 2010, 62(4), 339–343 http://dx.doi.org/10.1007/s00012-010-0032-0

[10] Protasov I.V., Selective survey on subset combinatorics of groups, J. Math. Sci. (N.Y.), 2011, 174(4), 486–514 http://dx.doi.org/10.1007/s10958-011-0314-x | Zbl 1283.20029

[11] Protasov I.V., Combinatorial derivation, preprint available at http://arxiv.org/abs/1210.0696

[12] Protasov I., Banakh T., Ball Structures and Colorings of Graphs and Groups, Math. Stud. Monogr. Ser., 11, VNTL, L’viv, 2003 | Zbl 1147.05033

[13] Protasov I., Zarichnyi M., General Asymptology, Math. Stud. Monogr. Ser., 12, VNTL, L’viv, 2007