We consider the Cauchy problem for an infinite-dimensional Ornstein-Uhlenbeck equation perturbed by gradient of a potential. We prove some results on existence and uniqueness of mild solutions of the problem. We also provide stochastic representation of mild solutions in terms of linear backward stochastic differential equations determined by the Ornstein-Uhlenbeck operator and the potential.
@article{bwmeta1.element.doi-10_2478_s11533-013-0304-y, author = {Andrzej Rozkosz}, title = {On mild solutions of gradient systems in Hilbert spaces}, journal = {Open Mathematics}, volume = {11}, year = {2013}, pages = {1994-2004}, zbl = {1292.35317}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0304-y} }
Andrzej Rozkosz. On mild solutions of gradient systems in Hilbert spaces. Open Mathematics, Tome 11 (2013) pp. 1994-2004. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0304-y/
[1] Ball J.M., Strongly continuous semigroups, weak solutions, and the variation of constants formula, Proc. Amer. Math. Soc., 1977, 63(2), 370–373 | Zbl 0353.47017
[2] Chojnowska-Michalik A., Transition Semigroups for Stochastic Semilinear Equations on Hilbert Spaces, Dissertationes Math. (Rozprawy Mat.), 396, Polish Academy of Sciences, Warsaw, 2001
[3] Da Prato G., Kolmogorov Equations for Stochastic PDEs, Adv. Courses Math. CRM Barcelona, Birkhäuser, Basel, 2004 http://dx.doi.org/10.1007/978-3-0348-7909-5
[4] Da Prato G., An Introduction to Infinite-Dimensional Analysis, Universitext, Springer, Berlin, 2006 | Zbl 1109.46001
[5] Da Prato G., Tubaro L., Self-adjointness of some infinite-dimensional elliptic operators and application to stochastic quantization, Probab. Theory Related Fields, 2000, 118(1), 131–145 | Zbl 0971.47019
[6] Da Prato G., Zabczyk J., Stochastic Equations in Infinite Dimensions, Encyclopedia Math. Appl., 44, Cambridge University Press, Cambridge, 1992 http://dx.doi.org/10.1017/CBO9780511666223 | Zbl 0761.60052
[7] Da Prato G., Zabczyk J., Second Order Partial Differential Equations in Hilbert Spaces, London Math. Soc. Lecture Note Ser., 293, Cambridge University Press, Cambridge, 2002 http://dx.doi.org/10.1017/CBO9780511543210 | Zbl 1012.35001
[8] Fuhrman M., Tessitore G., Nonlinear Kolmogorov equations in infinite dimensional spaces: the backward stochastic differential equations approach and applications to optimal control, Ann. Probab., 2002, 30(3), 1397–1465 http://dx.doi.org/10.1214/aop/1029867132 | Zbl 1017.60076
[9] Oharu S., Takahashi T., Characterization of nonlinear semigroups associated with semilinear evolution equations, Trans. Amer. Math. Soc., 1989, 311(2), 593–619 http://dx.doi.org/10.1090/S0002-9947-1989-0978369-9 | Zbl 0679.58011