In this paper we first consider a real-linear isometry T from a certain subspace A of C(X) (endowed with supremum norm) into C(Y) where X and Y are compact Hausdorff spaces and give a result concerning the description of T whenever A is a uniform algebra on X. The result is improved for the case where T(A) is, in addition, a complex subspace of C(Y). We also give a similar description for the case where A is a function space on X and the range of T is a real subspace of C(Y) satisfying a ceratin separating property. Next similar results are obtained for real-linear isometries between spaces of Lipschitz functions on compact metric spaces endowed with a certain complete norm.
@article{bwmeta1.element.doi-10_2478_s11533-013-0303-z, author = {Arya Jamshidi and Fereshteh Sady}, title = {Real-linear isometries between certain subspaces of continuous functions}, journal = {Open Mathematics}, volume = {11}, year = {2013}, pages = {2034-2043}, zbl = {1294.46043}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0303-z} }
Arya Jamshidi; Fereshteh Sady. Real-linear isometries between certain subspaces of continuous functions. Open Mathematics, Tome 11 (2013) pp. 2034-2043. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0303-z/
[1] Araujo J., Font J.J., Linear isometries between subspaces of continuous functions, Trans. Amer. Math. Soc., 1997, 349(1), 413–428 http://dx.doi.org/10.1090/S0002-9947-97-01713-3 | Zbl 0869.46014
[2] Browder A., Introduction to Function Algebras, W.A. Benjamin, New York-Amsterdam, 1969 | Zbl 0199.46103
[3] Dales H.G., Boundaries and peak points for Banach function algebras, Proc. London Math. Soc., 1971, 22(1), 121–136 http://dx.doi.org/10.1112/plms/s3-22.1.121 | Zbl 0211.15902
[4] Dunford N., Schwartz J.T., Linear Operators I, Pure Appl. Math., 7, Interscience, New York, 1958 | Zbl 0084.10402
[5] Ellis A.J., Real characterizations of function algebras amongst function spaces, Bull. London Math. Soc., 1990, 22(4), 381–385 http://dx.doi.org/10.1112/blms/22.4.381 | Zbl 0713.46016
[6] Hatori O., Hirasawa G., Miura T., Additively spectral-radius preserving surjections between unital semisimple commutative Banach algebras, Cent. Eur. J. Math., 2010, 8(3), 597–601 http://dx.doi.org/10.2478/s11533-010-0025-4 | Zbl 1211.46052
[7] Holsztynski W., Continuous mappings induced by isometries of spaces of continuous functions, Studia Math., 1966, 26, 133–136 | Zbl 0156.36903
[8] Jiménez-Vargas A., Villegas-Vallecillos M., Into linear isometries between spaces of Lipschitz functions, Houston J. Math., 2008, 34(4), 1165–1184 | Zbl 1169.46004
[9] de Leeuw K., Rudin W., Wermer J., The isometries of some function spaces, Proc. Amer. Math. Soc., 1960, 11(5), 694–698 http://dx.doi.org/10.1090/S0002-9939-1960-0121646-9 | Zbl 0097.09802
[10] Miura T., Real-linear isometries between function algebras, Cent. Eur. J. Math., 2011, 9(4), 778–788 http://dx.doi.org/10.2478/s11533-011-0044-9 | Zbl 1243.46043
[11] Nagasawa M., Isomorphisms between commutative Banach algebras with an application to rings of analytic functions, Kōdai Math. Sem. Rep., 1959, 11(4), 182–188 http://dx.doi.org/10.2996/kmj/1138844205 | Zbl 0166.40002
[12] Novinger W.P., Linear isometries of subspaces of spaces of continuous functions, Studia Math., 1975, 53(3), 273–276 | Zbl 0273.46015
[13] Phelps R.R., Lectures on Choquet’s Theorem, 2nd ed., Lecture Notes in Math., 1757, Springer, Berlin, 2001 http://dx.doi.org/10.1007/b76887 | Zbl 0172.15603
[14] Roy A.K., Extreme points and linear isometries of the Banach spaces of Lipschitz functions, Canad. J. Math., 1968, 20, 1150–1164 http://dx.doi.org/10.4153/CJM-1968-109-9 | Zbl 0159.18101
[15] Tonev T., Yates R., Norm-linear and norm-additive operators between uniform algebras, J. Math. Anal. Appl., 2009, 357(1), 45–53 http://dx.doi.org/10.1016/j.jmaa.2009.03.039 | Zbl 1171.47032
[16] Vasavada M.H., Closed Ideals and Linear Isometries of Certain Function Spaces, PhD thesis, University of Wisconsin, Madison, 1969