Numerical solution of inverse spectral problems for Sturm-Liouville operators with discontinuous potentials
Liubov Efremova ; Gerhard Freiling
Open Mathematics, Tome 11 (2013), p. 2044-2051 / Harvested from The Polish Digital Mathematics Library

We consider Sturm-Liouville differential operators on a finite interval with discontinuous potentials having one jump. As the main result we obtain a procedure of recovering the location of the discontinuity and the height of the jump. Using our result, we apply a generalized Rundell-Sacks algorithm of Rafler and Böckmann for a more effective reconstruction of the potential and present some numerical examples.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269082
@article{bwmeta1.element.doi-10_2478_s11533-013-0301-1,
     author = {Liubov Efremova and Gerhard Freiling},
     title = {Numerical solution of inverse spectral problems for Sturm-Liouville operators with discontinuous potentials},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {2044-2051},
     zbl = {1285.31002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0301-1}
}
Liubov Efremova; Gerhard Freiling. Numerical solution of inverse spectral problems for Sturm-Liouville operators with discontinuous potentials. Open Mathematics, Tome 11 (2013) pp. 2044-2051. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0301-1/

[1] Andrew A.L., Computing Sturm-Liouville potentials from two spectra, Inverse Problems, 2006, 22(6), 2069–2081 http://dx.doi.org/10.1088/0266-5611/22/6/010

[2] Andrew A.L., Finite difference methods for half inverse Sturm-Liouville problems, Appl. Math. Comput., 2011, 218(2), 445–457 http://dx.doi.org/10.1016/j.amc.2011.05.085 | Zbl 1231.65124

[3] Chu M.T., Golub G.H., Inverse Eigenvalue Problems, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2005 http://dx.doi.org/10.1093/acprof:oso/9780198566649.001.0001

[4] Freiling G., Yurko V., Inverse Sturm-Liouville Problems and their Applications, Nova Science, Huntington, 2001 | Zbl 1037.34005

[5] Freiling G., Yurko V., Inverse spectral problems for singular non-selfadjoint differential operators with discontinuities in an interior point, Inverse Problems, 2002, 18(3), 757–773 http://dx.doi.org/10.1088/0266-5611/18/3/316 | Zbl 1012.34083

[6] Gel’fand I.M., Levitan B.M., On the determination of a differential equation from its spectral function, Amer. Math. Soc. Transl., 1955, 1, 253–305

[7] Hald O.H., Discontinuous inverse eigenvalue problems, Comm. Pure Appl. Math., 1984, 37(5), 539–577 http://dx.doi.org/10.1002/cpa.3160370502 | Zbl 0541.34012

[8] Hald O.H., McLaughlin J.R., Solution of inverse nodal problems, Inverse Problems, 1989, 5(3), 307–347 http://dx.doi.org/10.1088/0266-5611/5/3/008

[9] Ignatiev M., Yurko V., Numerical methods for solving inverse Sturm-Liouville problems, Results Math., 2008, 52(1–2), 63–74 http://dx.doi.org/10.1007/s00025-007-0276-y | Zbl 1147.65062

[10] Krueger R.J., Inverse problems for nonabsorbing media with discontinuous material properties, J. Math. Phys., 1982, 23(3), 396–404 http://dx.doi.org/10.1063/1.525358 | Zbl 0511.35079

[11] Levitan B.M., Sargsjan I.S., Sturm-Liouville and Dirac Operators, Math. Appl. (Soviet Series), 59, Kluwer, Dordrecht, 1991 http://dx.doi.org/10.1007/978-94-011-3748-5

[12] Marchenko V.A., Sturm-Liouville Operators and Applications, Oper. Theory Adv. Appl., 22, Birkhäuser, Basel, 1986 http://dx.doi.org/10.1007/978-3-0348-5485-6

[13] Plum M., Eigenvalue problems for differential equations, In: Wavelets, Multilevel Methods and Elliptic PDEs, Leicester, 1996, Numer. Math. Sci. Comput., Oxford University Press, New York, 1997, 39–83

[14] Pöschel J., Trubowitz E., Inverse Spectral Theory, Pure Appl. Math., 130, Academic Press, Boston, 1987 | Zbl 0623.34001

[15] Pryce J.D., Numerical Solution of Sturm-Liouville Problems, Monogr. Numer. Anal., Oxford University Press, New York, 1993 | Zbl 0795.65053

[16] Rafler M., Böckmann C., Reconstructive method for inverse Sturm-Liouville problems with discontinuous potentials, Inverse Problems, 2007, 23(3), 933–946 http://dx.doi.org/10.1088/0266-5611/23/3/006 | Zbl 1127.34004

[17] Rundell W., Sacks P.E., Reconstruction techniques for classical inverse Sturm-Liouville problems, Math. Comp., 1992, 58(197), 161–183 http://dx.doi.org/10.1090/S0025-5718-1992-1106979-0 | Zbl 0745.34015

[18] Sacks P.E., An iterative method for the inverse Dirichlet problem, Inverse Problems, 1988, 4(4), 1055–1069 http://dx.doi.org/10.1088/0266-5611/4/4/009 | Zbl 0677.34015

[19] Shepel’sky D.G., The inverse problem of reconstruction of the medium’s conductivity in a class of discontinuous and increasing functions, Adv. Soviet Math., 1994, 19, 209–232

[20] Vinokurov V.A., Sadovnichiı V.A., Asymptotics of arbitrary order of the eigenvalues and eigenfunctions of the Sturm-Liouville boundary value problem in an interval with a summable potential, Izv. Math., 2000, 64(4), 695–754 http://dx.doi.org/10.1070/IM2000v064n04ABEH000295 | Zbl 1001.34021

[21] Yurko V., Integral transforms connected with discontinuous boundary value problems, Integral Transform. Spec. Funct., 2000, 10(2), 141–164 http://dx.doi.org/10.1080/10652460008819282 | Zbl 0989.34015