Rings of constants of four-variable Lotka-Volterra systems
Janusz Zieliński
Open Mathematics, Tome 11 (2013), p. 1923-1931 / Harvested from The Polish Digital Mathematics Library

Lotka-Volterra systems appear in population biology, plasma physics, laser physics and derivation theory, among many others. We determine the rings of constants of four-variable Lotka-Volterra derivations with four parameters C 1, C 2, C 3, C 4 ∈ k, where k is a field of characteristic zero. Thus, we give a full description of polynomial first integrals of the respective systems of differential equations.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269582
@article{bwmeta1.element.doi-10_2478_s11533-013-0300-2,
     author = {Janusz Zieli\'nski},
     title = {Rings of constants of four-variable Lotka-Volterra systems},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {1923-1931},
     zbl = {1296.13022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0300-2}
}
Janusz Zieliński. Rings of constants of four-variable Lotka-Volterra systems. Open Mathematics, Tome 11 (2013) pp. 1923-1931. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0300-2/

[1] Almeida M.A., Magalhães M.E., Moreira I.C., Lie symmetries and invariants of the Lotka-Volterra system, J. Math. Phys., 1995, 36(4), 1854–1867 http://dx.doi.org/10.1063/1.531362 | Zbl 0822.34006

[2] Bogoyavlenskiĭ O.I., Algebraic constructions of integrable dynamical systems - extension of the Volterra system, Russian Math. Surveys, 1991, 46(3), 1–64 http://dx.doi.org/10.1070/RM1991v046n03ABEH002801 | Zbl 0774.35013

[3] Cairó L., Llibre J., Darboux integrability for 3D Lotka-Volterra systems, J. Phys. A, 2000, 33(12), 2395–2406 http://dx.doi.org/10.1088/0305-4470/33/12/307 | Zbl 0953.34037

[4] Hegedűs P., The constants of the Volterra derivation, Cent. Eur. J. Math., 2012, 10(3), 969–973 http://dx.doi.org/10.2478/s11533-012-0024-8 | Zbl 1241.13022

[5] Kuroda S., Fields defined by locally nilpotent derivations and monomials, J. Algebra, 2005, 293(2), 395–406 http://dx.doi.org/10.1016/j.jalgebra.2005.06.011 | Zbl 1131.13022

[6] Moulin Ollagnier J., Nowicki A., Polynomial algebra of constants of the Lotka-Volterra system, Colloq. Math., 1999, 81(2), 263–270 | Zbl 1004.12004

[7] Nowicki A., Polynomial Derivations and their Rings of Constants, Uniwersytet Mikołaja Kopernika, Torun, 1994 | Zbl 1236.13023

[8] Nowicki A., Zielinski J., Rational constants of monomial derivations, J. Algebra, 2006, 302(1), 387–418 http://dx.doi.org/10.1016/j.jalgebra.2006.02.034 | Zbl 1119.13021

[9] Ossowski P., Zielinski J., Polynomial algebra of constants of the four variable Lotka-Volterra system, Colloq. Math., 2010, 120(2), 299–309 http://dx.doi.org/10.4064/cm120-2-9 | Zbl 1207.13016

[10] Zielinski J., Factorizable derivations and ideals of relations, Comm. Algebra, 2007, 35(3), 983–997 http://dx.doi.org/10.1080/00927870601117639 | Zbl 1171.13013

[11] Zielinski J., The five-variable Volterra system, Cent. Eur. J. Math., 2011, 9(4), 888–896 http://dx.doi.org/10.2478/s11533-011-0032-0 | Zbl 1236.13024

[12] Zielinski J., Ossowski P., Rings of constants of generic 4D Lotka-Volterra systems, Czechoslovak Math. J., 2013, 63(138)(2), 529–538 http://dx.doi.org/10.1007/s10587-013-0035-z | Zbl 1289.13017