Algorithms for permutability in finite groups
Adolfo Ballester-Bolinches ; Enric Cosme-Llópez ; Ramón Esteban-Romero
Open Mathematics, Tome 11 (2013), p. 1914-1922 / Harvested from The Polish Digital Mathematics Library

In this paper we describe some algorithms to identify permutable and Sylow-permutable subgroups of finite groups, Dedekind and Iwasawa finite groups, and finite T-groups (groups in which normality is transitive), PT-groups (groups in which permutability is transitive), and PST-groups (groups in which Sylow permutability is transitive). These algorithms have been implemented in a package for the computer algebra system GAP.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269091
@article{bwmeta1.element.doi-10_2478_s11533-013-0299-4,
     author = {Adolfo Ballester-Bolinches and Enric Cosme-Ll\'opez and Ram\'on Esteban-Romero},
     title = {Algorithms for permutability in finite groups},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {1914-1922},
     zbl = {1294.20026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0299-4}
}
Adolfo Ballester-Bolinches; Enric Cosme-Llópez; Ramón Esteban-Romero. Algorithms for permutability in finite groups. Open Mathematics, Tome 11 (2013) pp. 1914-1922. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0299-4/

[1] Ballester-Bolinches A., Beidleman J.C., Cossey J., Esteban-Romero R., Ragland M.F., Schmidt J., Permutable subnormal subgroups of finite groups, Arch. Math. (Basel), 2009, 92(6), 549–557 http://dx.doi.org/10.1007/s00013-009-2976-x | Zbl 1182.20024

[2] Ballester-Bolinches A., Beidleman J.C., Heineken H., Groups in which Sylow subgroups and subnormal subgroups permute, Illinois J. Math., 2003, 47(1–2), 63–69 | Zbl 1033.20019

[3] Ballester-Bolinches A., Beidleman J.C., Heineken H., A local approach to certain classes of finite groups, Comm. Algebra, 2003, 31(12), 5931–5942 http://dx.doi.org/10.1081/AGB-120024860 | Zbl 1041.20013

[4] Ballester-Bolinches A., Cosme-Llópez E., Esteban-Romero R., Permut: A GAP4 package to deal with permutability, v. 0.03, available at http://personales.upv.es/_resteban/gap/permut-0.03/

[5] Ballester-Bolinches A., Esteban-Romero R., Sylow permutable subnormal subgroups of finite groups, J. Algebra, 2002, 251(2), 727–738 http://dx.doi.org/10.1006/jabr.2001.9138 | Zbl 0999.20012

[6] Ballester-Bolinches A., Esteban-Romero R., Asaad M., Products of Finite Groups, de Gruyter Exp. Math., 53, Walter de Gruyter, Berlin, 2010 http://dx.doi.org/10.1515/9783110220612 | Zbl 1206.20019

[7] Ballester-Bolinches A., Esteban-Romero R., Ragland M., A note on finite PST-groups, J. Group Theory, 2007, 10(2), 205–210 http://dx.doi.org/10.1515/JGT.2007.016 | Zbl 1120.20023

[8] Ballester-Bolinches A., Esteban-Romero R., Ragland M., Corrigendum: A note on finite PST-groups, J. Group Theory, 2009, 12(6), 961–963 http://dx.doi.org/10.1515/JGT.2009.026 | Zbl 1183.20018

[9] Beidleman J.C., Brewster B., Robinson D.J.S., Criteria for permutability to be transitive in finite groups, J. Algebra, 1999, 222(2), 400–412 http://dx.doi.org/10.1006/jabr.1998.7964

[10] Beidleman J.C., Heineken H., Finite soluble groups whose subnormal subgroups permute with certain classes of subgroups, J. Group Theory, 2003, 6(2), 139–158 http://dx.doi.org/10.1515/jgth.2003.010 | Zbl 1045.20012

[11] Huppert B., Endliche Gruppen I, Grundlehren Math. Wiss., 134, Springer, Berlin-Heidelberg-New York, 1967 http://dx.doi.org/10.1007/978-3-642-64981-3

[12] Maier R., Schmid P., The embedding of quasinormal subgroups in finite groups, Math. Z., 1973, 131(3), 269–272 http://dx.doi.org/10.1007/BF01187244 | Zbl 0259.20017

[13] Robinson D.J.S., A note on finite groups in which normality is transitive, Proc. Amer. Math. Soc., 1968, 19(4), 933–937 http://dx.doi.org/10.1090/S0002-9939-1968-0230808-9 | Zbl 0159.31002

[14] Schmid P., Subgroups permutable with all Sylow subgroups, J. Algebra, 1998, 207(1), 285–293 http://dx.doi.org/10.1006/jabr.1998.7429

[15] Schmidt R., Subgroup Lattices of Groups, de Gruyter Exp. Math., 14, Walter de Gruyter, Berlin, 1994 http://dx.doi.org/10.1515/9783110868647

[16] The GAP Group, GAP - Groups, Algorithms, Programming, v. 4.5.7, 2012