Quotients of an affine variety by an action of a torus
Olga Chuvashova ; Nikolay Pechenkin
Open Mathematics, Tome 11 (2013), p. 1863-1880 / Harvested from The Polish Digital Mathematics Library

Let X be an affine T-variety. We study two different quotients for the action of T on X: the toric Chow quotient X/C T and the toric Hilbert scheme H. We introduce a notion of the main component H 0 of H, which parameterizes general T-orbit closures in X and their flat limits. The main component U 0 of the universal family U over H is a preimage of H 0. We define an analogue of a universal family WX over the main component of X/C T. We show that the toric Chow morphism restricted on the main components lifts to a birational projective morphism from U 0 to W X. The variety W X also provides a geometric realization of the Altmann-Hausen family. In particular, the notion of W X allows us to provide an explicit description of the fan of the Altmann-Hausen family in the toric case.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269742
@article{bwmeta1.element.doi-10_2478_s11533-013-0295-8,
     author = {Olga Chuvashova and Nikolay Pechenkin},
     title = {Quotients of an affine variety by an action of a torus},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {1863-1880},
     zbl = {1307.14068},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0295-8}
}
Olga Chuvashova; Nikolay Pechenkin. Quotients of an affine variety by an action of a torus. Open Mathematics, Tome 11 (2013) pp. 1863-1880. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0295-8/

[1] Alexeev V., Brion M., Moduli of affine schemes with reductive group action, J. Algebraic Geom., 2005, 14(1), 83–117 http://dx.doi.org/10.1090/S1056-3911-04-00377-7 | Zbl 1081.14005

[2] Altmann K., Hausen J., Polyhedral divisors and algebraic torus actions, Math. Ann., 2006, 334(3), 557–607 http://dx.doi.org/10.1007/s00208-005-0705-8 | Zbl 1193.14060

[3] Arzhantsev I.V., Hausen J., On the multiplication map of a multigraded algebra, Math. Res. Lett., 2007, 14(1), 129–136 | Zbl 1125.13001

[4] Berchtold F., Hausen J., GIT-equivalence beyond the ample cone, Michigan Math. J., 2006, 54(3), 483–515 http://dx.doi.org/10.1307/mmj/1163789912 | Zbl 1171.14028

[5] Bertin J., The punctual Hilbert scheme: an introduction, available at http://cel.archives-ouvertes.fr/cel-00437713/en/ | Zbl 1327.13026

[6] Brion M., Invariant Hilbert schemes, preprint available at http://arxiv.org/abs/1102.0198

[7] Chuvashova O.V., The main component of the toric Hilbert scheme, Tôhoku Math. J., 2008, 60(3), 365–382 http://dx.doi.org/10.2748/tmj/1223057734 | Zbl 1160.14001

[8] Cox D.A., Little J.B., Schenck H.K., Toric Varieties, Grad. Stud. Math., 124, American Mathematical Society, Providence, 2011

[9] Craw A., Maclagan D., Fiber fans and toric quotients, Discrete Comput. Geom., 2007, 37(2), 251–266 http://dx.doi.org/10.1007/s00454-006-1282-7 | Zbl 1147.14028

[10] Eisenbud D., Harris J., The Geometry of Schemes, Grad. Texts in Math., 197, Springer, New York, 2000

[11] Fulton W., Introduction to Toric Varieties, Ann. of Math. Stud., 131, Princeton University Press, Princeton, 1993 | Zbl 0813.14039

[12] Grothendieck A., Éléments de Géométrie Algébrique IV. Étude Locale des Schémas et des Morphismes de Schémas IV, Inst. Hautes Études Sci. Publ. Math., 32, Paris, 1967 | Zbl 0153.22301

[13] Haiman M., Sturmfels B., Multigraded Hilbert schemes, J. Algebraic Geom., 2004, 13(4), 725–769 http://dx.doi.org/10.1090/S1056-3911-04-00373-X

[14] Hartshorne R., Algebraic Geometry, Grad. Texts in Math., 52, Springer, New York-Heidelberg, 1977 http://dx.doi.org/10.1007/978-1-4757-3849-0

[15] Kapranov M.M., Sturmfels B., Zelevinsky A.V., Quotients of toric varieties, Math. Ann., 1991, 290(4), 644–655 | Zbl 0762.14023

[16] Mumford D., Fogarty J., Kirwan F., Geometric Invariant Theory, 3rd ed., Ergeb. Math. Grenzgeb., 34, Springer, Berlin, 1994 http://dx.doi.org/10.1007/978-3-642-57916-5 | Zbl 0797.14004

[17] Oda T., Convex Bodies and Algebraic Geometry, Ergeb. Math. Grenzgeb., 15, Springer, Berlin, 1988

[18] Peeva I., Stillman M., Toric Hilbert schemes, Duke Math. J., 2002, 111(3), 419–449 http://dx.doi.org/10.1215/S0012-7094-02-11132-6 | Zbl 1067.14005

[19] Swiecicka J., Quotients of toric varieties by actions of subtori, Colloq. Math., 1999, 82(1), 105–116 | Zbl 0961.14032

[20] Vollmert R., Toroidal embeddings and polyhedral divisors, Int. J. Algebra, 2010, 4(5–8), 383–388 | Zbl 1210.14058

[21] Ziegler G., Lectures on Polytopes, Grad. Texts in Math., 152, Springer, New York, 1995 http://dx.doi.org/10.1007/978-1-4613-8431-1