Characterizations of ɛ-duality gap statements for constrained optimization problems
Horaţiu-Vasile Boncea ; Sorin-Mihai Grad
Open Mathematics, Tome 11 (2013), p. 2020-2033 / Harvested from The Polish Digital Mathematics Library

In this paper we present different regularity conditions that equivalently characterize various ɛ-duality gap statements (with ɛ ≥ 0) for constrained optimization problems and their Lagrange and Fenchel-Lagrange duals in separated locally convex spaces, respectively. These regularity conditions are formulated by using epigraphs and ɛ-subdifferentials. When ɛ = 0 we rediscover recent results on stable strong and total duality and zero duality gap from the literature.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269358
@article{bwmeta1.element.doi-10_2478_s11533-013-0294-9,
     author = {Hora\c tiu-Vasile Boncea and Sorin-Mihai Grad},
     title = {Characterizations of e-duality gap statements for constrained optimization problems},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {2020-2033},
     zbl = {1284.49041},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0294-9}
}
Horaţiu-Vasile Boncea; Sorin-Mihai Grad. Characterizations of ɛ-duality gap statements for constrained optimization problems. Open Mathematics, Tome 11 (2013) pp. 2020-2033. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0294-9/

[1] Anbo Y., Nonstandard arguments and the characterization of independence in generic structures, RIMS Kôkyûroku, 2009, 1646, 4–17

[2] Boţ R.I., Grad S.-M., Lower semicontinuous type regularity conditions for subdifferential calculus, Optim. Methods Softw., 2010, 25(1), 37–48 http://dx.doi.org/10.1080/10556780903208977 | Zbl 1220.90158

[3] Boţ R.I., Grad S.-M., Wanka G., Maximal monotonicity for the precomposition with a linear operator, SIAM J. Optim., 2006, 17(4), 1239–1252 | Zbl 1133.47038

[4] Boţ R.I., Grad S.-M., Wanka G., Weaker constraint qualifications in maximal monotonicity, Numer. Funct. Anal. Optim., 2007, 28(1–2), 27–41 | Zbl 1119.47051

[5] Boţ R.I., Grad S.-M., Wanka G., A new constraint qualification for the formula of the subdifferential of composed convex functions in infinite dimensional spaces, Math. Nachr., 2008, 281(8), 1088–1107 http://dx.doi.org/10.1002/mana.200510662 | Zbl 1155.49019

[6] Boţ R.I., Grad S.-M., Wanka G., New regularity conditions for strong and total Fenchel-Lagrange duality in infinite dimensional spaces, Nonlinear Anal., 2008, 69(1), 323–336 http://dx.doi.org/10.1016/j.na.2007.05.021 | Zbl 1142.49015

[7] Boţ R.I., Grad S.-M., Wanka G., On strong and total Lagrange duality for convex optimization problems, J. Math. Anal. Appl., 2008, 337(2), 1315–1325 http://dx.doi.org/10.1016/j.jmaa.2007.04.071 | Zbl 1160.90004

[8] Boţ R.I., Grad S.-M., Wanka G., Duality in Vector Optimization, Vector Optim., Springer, Berlin, 2009 | Zbl 1177.90355

[9] Boţ R.I., Grad S.-M., Wanka G., Generalized Moreau-Rockafellar results for composed convex functions, Optimization, 2009, 58(7), 917–933 http://dx.doi.org/10.1080/02331930902945082 | Zbl 1201.90154

[10] Boţ R.I., Wanka G., Farkas-type results with conjugate functions, SIAM J. Optim., 2005, 15(2), 540–554 http://dx.doi.org/10.1137/030602332 | Zbl 1114.90147

[11] Boţ R.I., Wanka G., An alternative formulation for a new closed cone constraint qualification, Nonlinear Anal., 2006, 64(6), 1367–1381 http://dx.doi.org/10.1016/j.na.2005.06.041 | Zbl 1105.46052

[12] Boţ R.I., Wanka G., A weaker regularity condition for subdifferential calculus and Fenchel duality in infinite dimensional spaces, Nonlinear Anal., 2006, 64(12), 2787–2804 http://dx.doi.org/10.1016/j.na.2005.09.017 | Zbl 1087.49026

[13] Fang D.H., Li C., Ng K.F., Constraint qualifications for optimality conditions and total Lagrange dualities in convex infinite programming, Nonlinear Anal., 2010, 73(5), 1143–1159 http://dx.doi.org/10.1016/j.na.2010.04.020 | Zbl 1218.90200

[14] Friedman H.M., A way out, In: One Hundred Years of Russell’s Paradox, de Gruyter Ser. Log. Appl., 6, de Gruyter, Berlin, 2004, 49–84

[15] Jeyakumar V., Li G.Y., New dual constraint qualifications characterizing zero duality gaps of convex programs and semidefinite programs, Nonlinear Anal., 2009, 71(12), e2239–e2249 http://dx.doi.org/10.1016/j.na.2009.05.009 | Zbl 1239.90084

[16] Jeyakumar V., Li G.Y., Stable zero duality gaps in convex programming: Complete dual characterisations with applications to semidefinite programs, J. Math. Anal. Appl., 2009, 360(1), 156–167 http://dx.doi.org/10.1016/j.jmaa.2009.06.043 | Zbl 1208.90134

[17] Li C., Fang D., López G., López M.A., Stable and total Fenchel duality for convex optimization problems in locally convex spaces, SIAM J. Optim., 2009, 20(2), 1032–1051 http://dx.doi.org/10.1137/080734352 | Zbl 1189.49051

[18] Rubinov A.M., Glover B.M., Quasiconvexity via two step functions, In: Generalized Convexity, Generalized Monotonicity: Recent Results, Luminy, June 17–21, 1996, Nonconvex Optim. Appl., 27, Kluwer, Dordrecht, 1998, 159–183 http://dx.doi.org/10.1007/978-1-4613-3341-8_5