Milnor fibration at infinity for mixed polynomials
Ying Chen
Open Mathematics, Tome 12 (2014), p. 28-38 / Harvested from The Polish Digital Mathematics Library

We study the existence of Milnor fibration on a big enough sphere at infinity for a mixed polynomial f: ℝ2n → ℝ2. By using strongly non-degenerate condition, we prove a counterpart of Némethi and Zaharia’s fibration theorem. In particular, we obtain a global version of Oka’s fibration theorem for strongly non-degenerate and convenient mixed polynomials.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269348
@article{bwmeta1.element.doi-10_2478_s11533-013-0293-x,
     author = {Ying Chen},
     title = {Milnor fibration at infinity for mixed polynomials},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {28-38},
     zbl = {1311.32011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0293-x}
}
Ying Chen. Milnor fibration at infinity for mixed polynomials. Open Mathematics, Tome 12 (2014) pp. 28-38. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0293-x/

[1] Araújo dos Santos R.N., Chen Y., Tibăr M., Singular open book structures from real mappings, Cent. Eur. J. Math., 2013, 11(5), 817–828 http://dx.doi.org/10.2478/s11533-013-0212-1 | Zbl 1276.32024

[2] Bodin A., Milnor fibration and fibred links at infinity, Internat. Math. Res. Notices, 1999, 11, 615–621 http://dx.doi.org/10.1155/S1073792899000318 | Zbl 0941.32030

[3] Broughton S.A., On the topology of polynomial hypersurfaces, In: Singularities, Part 1, Arcata, July 20–August 7, 1981, Proc. Sympos. Pure Math., 40, American Mathematical Society, Providence, 1983, 167–178

[4] Broughton S.A., Milnor numbers and the topology of polynomial hypersurfaces, Invent. Math., 1988, 92(2), 217–241 http://dx.doi.org/10.1007/BF01404452 | Zbl 0658.32005

[5] Chen Y., Bifurcation Values of Mixed Polynomials and Newton Polyhedra, PhD thesis, Université de Lille 1, Lille, 2012

[6] Chen Y., Tibăr M., Bifurcation values and monodromy of mixed polynomials, Math. Res. Lett., 2012, 19(1), 59–79 http://dx.doi.org/10.4310/MRL.2012.v19.n1.a6 | Zbl 1274.14006

[7] Cisneros-Molina J.L., Join theorem for polar weighted homogeneous singularities, In: Singularities II, Cuernavaca, January 8–26, 2007, Contemp. Math., 475, American Mathematical Society, Providence, 2008, 43–59 | Zbl 1172.32008

[8] Kouchnirenko A.G., Polyèdres de Newton et nombres de Milnor, Invent. Math., 1976, 32(1), 1–31 http://dx.doi.org/10.1007/BF01389769 | Zbl 0328.32007

[9] Milnor J., Singular Points of Complex Hypersurfaces, Ann. of Math. Studies, 61, Princeton University Press, 1968 | Zbl 0184.48405

[10] Némethi A., Théorie de Lefschetz pour les variétés algébriques affines, C. R. Acad. Sci. Paris Sér. I Math., 1986, 303(12), 567–570 | Zbl 0612.14007

[11] Némethi A., Lefschetz theory for complex affine varieties, Rev. Roumaine Math. Pures Appl., 1988, 33(3), 233–250 | Zbl 0665.14003

[12] Némethi A., Zaharia A., On the bifurcation set of a polynomial function and Newton boundary, Publ. Res. Inst. Math. Sci., 1990, 26(4), 681–689 http://dx.doi.org/10.2977/prims/1195170853 | Zbl 0736.32024

[13] Némethi A., Zaharia A., Milnor fibration at infinity, Indag. Math. (N.S.), 1992, 3(3), 323–335 http://dx.doi.org/10.1016/0019-3577(92)90039-N | Zbl 0806.57021

[14] Oka M., Topology of polar weighted homogeneous hypersurfaces, Kodai Math. J., 2008, 31(2), 163–182 http://dx.doi.org/10.2996/kmj/1214442793

[15] Oka M., Non-degenerate mixed functions, Kodai Math. J., 2010, 33(1), 1–62 http://dx.doi.org/10.2996/kmj/1270559157