The geometry of the space of Cauchy data of nonlinear PDEs
Giovanni Moreno
Open Mathematics, Tome 11 (2013), p. 1960-1981 / Harvested from The Polish Digital Mathematics Library

First-order jet bundles can be put at the foundations of the modern geometric approach to nonlinear PDEs, since higher-order jet bundles can be seen as constrained iterated jet bundles. The definition of first-order jet bundles can be given in many equivalent ways - for instance, by means of Grassmann bundles. In this paper we generalize it by means of flag bundles, and develop the corresponding theory for higher-oder and infinite-order jet bundles. We show that this is a natural geometric framework for the space of Cauchy data for nonlinear PDEs. As an example, we derive a general notion of transversality conditions in the Calculus of Variations.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269260
@article{bwmeta1.element.doi-10_2478_s11533-013-0292-y,
     author = {Giovanni Moreno},
     title = {The geometry of the space of Cauchy data of nonlinear PDEs},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {1960-1981},
     zbl = {1292.35011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0292-y}
}
Giovanni Moreno. The geometry of the space of Cauchy data of nonlinear PDEs. Open Mathematics, Tome 11 (2013) pp. 1960-1981. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0292-y/

[1] Bocharov A.V., Chetverikov V.N., Duzhin S.V., Khor’kova N.G., Krasil’shchik I.S., Samokhin A.V., Torkhov Yu.N., Verbovetsky A.M., Vinogradov A.M., Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, Transl. Math. Monogr., 182, American Mathematical Society, Providence, 1999

[2] Bott R., Tu L.W., Differential Forms in Algebraic Topology, Grad. Texts in Math., 82, Springer, New York-Berlin, 1982 http://dx.doi.org/10.1007/978-1-4757-3951-0 | Zbl 0496.55001

[3] van Brunt B., The Calculus of Variations, Universitext, Springer, New York, 2004 | Zbl 1039.49001

[4] Bryant R.L., Chern S.S., Gardner R.B., Goldschmidt H.L., Griffiths P.A., Exterior Differential Systems, Math. Sci. Res. Inst. Publ., 18, Springer, New York, 1991 http://dx.doi.org/10.1007/978-1-4613-9714-4

[5] Giaquinta M., Hildebrandt S., Calculus of Variations. I, Grundlehren Math. Wiss., 310, Springer, Berlin, 1996 | Zbl 0853.49001

[6] Kijowski J., A simple derivation of canonical structure and quasi-local Hamiltonians in general relativity, Gen. Relativity Gravitation, 1997, 29(3), 307–343 http://dx.doi.org/10.1023/A:1010268818255 | Zbl 0873.53070

[7] Krasil’shchik J., Verbovetsky A., Geometry of jet spaces and integrable systems, J. Geom. Phys., 2011, 61(9), 1633–1674 http://dx.doi.org/10.1016/j.geomphys.2010.10.012 | Zbl 1230.58005

[8] Krupka D., Of the structure of the Euler mapping, Arch. Math. (Brno), 1974, 10(1), 55–61 | Zbl 0337.33012

[9] Michor P.W., Manifolds of Differentiable Mappings, Shiva Mathematics Series, 3, Shiva Publishing, Nantwich, 1980 | Zbl 0433.58001

[10] Moreno G., A C-spectral sequence associated with free boundary variational problems, In: Geometry, Integrability and Quantization, Avangard Prima, Sofia, 2010, 146–156

[11] Vinogradov A.M., Many-valued solutions, and a principle for the classification of nonlinear differential equations, Dokl. Akad. Nauk SSSR, 1973, 210, 11–14 (in Russian)

[12] Vinogradov A.M., The C-spectral sequence, Lagrangian formalism, and conservation laws. I. The linear theory, J. Math. Anal. Appl., 1984, 100(1), 1–40 http://dx.doi.org/10.1016/0022-247X(84)90071-4

[13] Vinogradov A.M., The C-spectral sequence, Lagrangian formalism, and conservation laws. II. The nonlinear theory, J. Math. Anal. Appl., 1984, 100(1), 41–129 http://dx.doi.org/10.1016/0022-247X(84)90072-6

[14] Vinogradov A.M., Geometric singularities of solutions of nonlinear partial differential equations, In: Differential Geometry and its Applications, Brno, 1986, Math. Appl. (East European Ser.), 27, Reidel, Dordrecht, 1987, 359–379

[15] Vinogradov A.M., Cohomological Analysis of Partial Differential Equations and Secondary Calculus, Transl. Math. Monogr., 204, American Mathematical Society, Providence, 2001 | Zbl 1152.58308

[16] Vinogradov A.M., Moreno G., Domains in infinite jet spaces: the C-spectral sequence, Dokl. Math., 2007, 75(2), 204–207 http://dx.doi.org/10.1134/S1064562407020081 | Zbl 1154.58002

[17] Vitagliano L., Secondary calculus and the covariant phase space, J. Geom. Phys., 2009, 59(4), 426–447 http://dx.doi.org/10.1016/j.geomphys.2008.12.001 | Zbl 1171.53057

[18] Vitagliano L., private communication, 2010