On the minimal length of the longest trail in a fixed edge-density graph
Vajk Szécsi
Open Mathematics, Tome 11 (2013), p. 1831-1837 / Harvested from The Polish Digital Mathematics Library

A nearly sharp lower bound on the length of the longest trail in a graph on n vertices and average degree k is given provided the graph is dense enough (k ≥ 12.5).

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269773
@article{bwmeta1.element.doi-10_2478_s11533-013-0285-x,
     author = {Vajk Sz\'ecsi},
     title = {On the minimal length of the longest trail in a fixed edge-density graph},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {1831-1837},
     zbl = {1277.05089},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0285-x}
}
Vajk Szécsi. On the minimal length of the longest trail in a fixed edge-density graph. Open Mathematics, Tome 11 (2013) pp. 1831-1837. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0285-x/

[1] Catlin P.A., Super-Eulerian graphs: a survey, J. Graph Theory, 1992, 16(2), 177–196 http://dx.doi.org/10.1002/jgt.3190160209[Crossref]

[2] Erdős P., Gallai T., On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar., 1959, 10(3–4), 337–356 http://dx.doi.org/10.1007/BF02024498[Crossref] | Zbl 0090.39401

[3] Faudree R.J., Schelp R.H., Path connected graphs, Acta Math. Acad. Sci. Hungar., 1974, 25(3–4), 313–319 http://dx.doi.org/10.1007/BF01886090[Crossref] | Zbl 0294.05119