An eigenvalue of a graph G is called a main eigenvalue if it has an eigenvector the sum of whose entries is not equal to zero. Let G 0 be the graph obtained from G by deleting all pendant vertices and δ(G) the minimum degree of vertices of G. In this paper, all connected tricyclic graphs G with δ(G 0) ≥ 2 and exactly two main eigenvalues are determined.
@article{bwmeta1.element.doi-10_2478_s11533-013-0283-z, author = {Xiaoxia Fan and Yanfeng Luo and Xing Gao}, title = {Tricyclic graphs with exactly two main eigenvalues}, journal = {Open Mathematics}, volume = {11}, year = {2013}, pages = {1800-1816}, zbl = {1277.05107}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0283-z} }
Xiaoxia Fan; Yanfeng Luo; Xing Gao. Tricyclic graphs with exactly two main eigenvalues. Open Mathematics, Tome 11 (2013) pp. 1800-1816. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0283-z/
[1] Bondy J.A., Murty U.S.R., Graph Theory with Applications, Elsevier, New York, 1976 | Zbl 1226.05083
[2] Cvetković D., Rowlinson P., Simic S., Eigenspaces of Graphs, Encyclopedia Math. Appl., 66, Cambridge University Press, Cambridge, 1997 http://dx.doi.org/10.1017/CBO9781139086547[Crossref] | Zbl 0878.05057
[3] Geng X., Li S., The spectral radius of tricyclic graphs with n vertices and k pendant vertices, Linear Algebra Appl., 2008, 428(11–12), 2639–2653 http://dx.doi.org/10.1016/j.laa.2007.12.013[Crossref][WoS]
[4] Hagos E.M., Some results on graph spectra, Linear Algebra Appl., 2002, 356(1–3), 103–111 http://dx.doi.org/10.1016/S0024-3795(02)00324-5[Crossref] | Zbl 1015.05051
[5] Hou Y., Tian F., Unicyclic graphs with exactly two main eigenvalues, Appl. Math. Lett., 2006, 19(11), 1143–1147 http://dx.doi.org/10.1016/j.aml.2005.11.025[Crossref][WoS] | Zbl 1172.05336
[6] Hou Y.P., Zhou H.Q., Trees with exactly two main eigenvalues, J. Nat. Sci. Hunan Norm. Univ., 2005, 28(2), 1–3 (in Chinese) | Zbl 1109.05071
[7] Hu Z., Li S., Zhu C., Bicyclic graphs with exactly two main eigenvalues, Linear Algebra Appl., 2009, 431(10), 1848–1857 http://dx.doi.org/10.1016/j.laa.2009.06.022[WoS] | Zbl 1175.05085
[8] Shi L., On graphs with given main eigenvalues, Appl. Math. Lett., 2009, 22(12), 1870–1874 http://dx.doi.org/10.1016/j.aml.2009.06.027[Crossref]