Real linear isometries between function algebras. II
Osamu Hatori ; Takeshi Miura
Open Mathematics, Tome 11 (2013), p. 1838-1842 / Harvested from The Polish Digital Mathematics Library

We describe the general form of isometries between uniformly closed function algebras on locally compact Hausdorff spaces in a continuation of the study by Miura. We can actually obtain the form on the Shilov boundary, rather than just on the Choquet boundary. We also give an example showing that the form cannot be extended to the whole maximal ideal space.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:268985
@article{bwmeta1.element.doi-10_2478_s11533-013-0282-0,
     author = {Osamu Hatori and Takeshi Miura},
     title = {Real linear isometries between function algebras. II},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {1838-1842},
     zbl = {1294.46042},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0282-0}
}
Osamu Hatori; Takeshi Miura. Real linear isometries between function algebras. II. Open Mathematics, Tome 11 (2013) pp. 1838-1842. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0282-0/

[1] Ellis A.J., Real characterizations of function algebras amongst function spaces, Bull. London Math. Soc., 1990, 22(4), 381–385 http://dx.doi.org/10.1112/blms/22.4.381[Crossref]

[2] Fleming R.J., Jamison J.E., Isometries on Banach Spaces: Function Spaces, Chapman Hall/CRC Monogr. Surv. Pure Appl. Math., 129, Chapman&Hall/CRC, Boca Raton, 2003 | Zbl 1011.46001

[3] de Leeuw K., Rudin W., Wermer J., The isometries of some function spaces, Proc. Amer. Math. Soc., 1960, 11(5), 694–698 http://dx.doi.org/10.1090/S0002-9939-1960-0121646-9[Crossref] | Zbl 0097.09802

[4] Miura T., Real-linear isometries between function algebras, Cent. Eur. J. Math., 2011, 9(4), 778–788 http://dx.doi.org/10.2478/s11533-011-0044-9[Crossref] | Zbl 1243.46043

[5] Nagasawa M., Isomorphisms between commutative Banach algebras with an application to rings of analytic functions, Kōdai Math. Sem. Rep., 1959, 11(4), 182–188 http://dx.doi.org/10.2996/kmj/1138844205[Crossref]