We present some completely normal elements in the maximal real subfields of cyclotomic fields over the field of rational numbers, relying on the criterion for normal element developed in [Jung H.Y., Koo J.K., Shin D.H., Normal bases of ray class fields over imaginary quadratic fields, Math. Z., 2012, 271(1–2), 109–116]. And, we further find completely normal elements in certain abelian extensions of modular function fields in terms of Siegel functions.
@article{bwmeta1.element.doi-10_2478_s11533-013-0280-2, author = {Ja Koo and Dong Shin}, title = {Completely normal elements in some finite abelian extensions}, journal = {Open Mathematics}, volume = {11}, year = {2013}, pages = {1725-1731}, zbl = {1279.11106}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0280-2} }
Ja Koo; Dong Shin. Completely normal elements in some finite abelian extensions. Open Mathematics, Tome 11 (2013) pp. 1725-1731. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0280-2/
[1] Blessenohl D., Johnsen K., Eine Verschärfung des Satzes von der Normalbasis, J. Algebra, 1986, 103(1), 141–159 http://dx.doi.org/10.1016/0021-8693(86)90174-2[Crossref]
[2] Chowla S., The nonexistence of nontrivial linear relations between the roots of a certain irreducible equation, J. Number Theory, 1970, 2(1), 120–123 http://dx.doi.org/10.1016/0022-314X(70)90012-0[Crossref]
[3] Faith C.C., Extensions of normal bases and completely basic fields, Trans. Amer. Math. Soc., 1957, 85(2), 406–427 http://dx.doi.org/10.1090/S0002-9947-1957-0087632-7[Crossref]
[4] Hachenberger D., Finite Fields, Kluwer Internat. Ser. Engrg. Comput. Sci., 390, Kluwer, Boston, 1997
[5] Hachenberger D., Universal normal bases for the abelian closure of the field of rational numbers, Acta Arith., 2000, 93(4), 329–341 | Zbl 0956.11024
[6] Janusz G.J., Algebraic Number Fields, 2nd ed., Grad. Stud. Math., 7, American Mathematical Society, Providence, 1996 | Zbl 0854.11001
[7] Jung H.Y., Koo J.K., Shin D.H., Normal bases of ray class fields over imaginary quadratic fields, Math. Z., 2012, 271(1–2), 109–116 http://dx.doi.org/10.1007/s00209-011-0854-2[Crossref][WoS] | Zbl 1279.11061
[8] Kawamoto F., On normal integral bases, Tokyo J. Math., 1984, 7(1), 221–231 http://dx.doi.org/10.3836/tjm/1270153005[Crossref]
[9] Kubert D., Lang S., Modular Units, Grundlehren Math. Wiss., 244, Spinger, New York-Berlin, 1981
[10] Lang S., Elliptic Functions, 2nd ed., Grad. Texts in Math., 112, Spinger, New York, 1987 http://dx.doi.org/10.1007/978-1-4612-4752-4[Crossref]
[11] Okada T., On an extension of a theorem of S. Chowla, Acta Arith., 1980/81, 38(4), 341–345 [WoS]
[12] Shimura G., Introduction to the Arithmetic Theory of Automorphic Functions, Publ. Math. Soc. Japan, 11, Iwanami Shoten/Princeton University Press, Tokyo/Princeton, 1971 | Zbl 0221.10029
[13] van der Waerden B.L., Algebra I, Springer, New York, 1991 http://dx.doi.org/10.1007/978-1-4684-9999-5[Crossref]
[14] Washington L.C., Introduction to Cyclotomic Fields, Grad. Texts in Math., 83, Springer, New York, 1982 http://dx.doi.org/10.1007/978-1-4684-0133-2[Crossref]