Completely normal elements in some finite abelian extensions
Ja Koo ; Dong Shin
Open Mathematics, Tome 11 (2013), p. 1725-1731 / Harvested from The Polish Digital Mathematics Library

We present some completely normal elements in the maximal real subfields of cyclotomic fields over the field of rational numbers, relying on the criterion for normal element developed in [Jung H.Y., Koo J.K., Shin D.H., Normal bases of ray class fields over imaginary quadratic fields, Math. Z., 2012, 271(1–2), 109–116]. And, we further find completely normal elements in certain abelian extensions of modular function fields in terms of Siegel functions.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269002
@article{bwmeta1.element.doi-10_2478_s11533-013-0280-2,
     author = {Ja Koo and Dong Shin},
     title = {Completely normal elements in some finite abelian extensions},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {1725-1731},
     zbl = {1279.11106},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0280-2}
}
Ja Koo; Dong Shin. Completely normal elements in some finite abelian extensions. Open Mathematics, Tome 11 (2013) pp. 1725-1731. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0280-2/

[1] Blessenohl D., Johnsen K., Eine Verschärfung des Satzes von der Normalbasis, J. Algebra, 1986, 103(1), 141–159 http://dx.doi.org/10.1016/0021-8693(86)90174-2[Crossref]

[2] Chowla S., The nonexistence of nontrivial linear relations between the roots of a certain irreducible equation, J. Number Theory, 1970, 2(1), 120–123 http://dx.doi.org/10.1016/0022-314X(70)90012-0[Crossref]

[3] Faith C.C., Extensions of normal bases and completely basic fields, Trans. Amer. Math. Soc., 1957, 85(2), 406–427 http://dx.doi.org/10.1090/S0002-9947-1957-0087632-7[Crossref]

[4] Hachenberger D., Finite Fields, Kluwer Internat. Ser. Engrg. Comput. Sci., 390, Kluwer, Boston, 1997

[5] Hachenberger D., Universal normal bases for the abelian closure of the field of rational numbers, Acta Arith., 2000, 93(4), 329–341 | Zbl 0956.11024

[6] Janusz G.J., Algebraic Number Fields, 2nd ed., Grad. Stud. Math., 7, American Mathematical Society, Providence, 1996 | Zbl 0854.11001

[7] Jung H.Y., Koo J.K., Shin D.H., Normal bases of ray class fields over imaginary quadratic fields, Math. Z., 2012, 271(1–2), 109–116 http://dx.doi.org/10.1007/s00209-011-0854-2[Crossref][WoS] | Zbl 1279.11061

[8] Kawamoto F., On normal integral bases, Tokyo J. Math., 1984, 7(1), 221–231 http://dx.doi.org/10.3836/tjm/1270153005[Crossref]

[9] Kubert D., Lang S., Modular Units, Grundlehren Math. Wiss., 244, Spinger, New York-Berlin, 1981

[10] Lang S., Elliptic Functions, 2nd ed., Grad. Texts in Math., 112, Spinger, New York, 1987 http://dx.doi.org/10.1007/978-1-4612-4752-4[Crossref]

[11] Okada T., On an extension of a theorem of S. Chowla, Acta Arith., 1980/81, 38(4), 341–345 [WoS]

[12] Shimura G., Introduction to the Arithmetic Theory of Automorphic Functions, Publ. Math. Soc. Japan, 11, Iwanami Shoten/Princeton University Press, Tokyo/Princeton, 1971 | Zbl 0221.10029

[13] van der Waerden B.L., Algebra I, Springer, New York, 1991 http://dx.doi.org/10.1007/978-1-4684-9999-5[Crossref]

[14] Washington L.C., Introduction to Cyclotomic Fields, Grad. Texts in Math., 83, Springer, New York, 1982 http://dx.doi.org/10.1007/978-1-4684-0133-2[Crossref]