The one-point Lindelöfication of an uncountable discrete space can be surlindelöf
Oleg Okunev
Open Mathematics, Tome 11 (2013), p. 1750-1754 / Harvested from The Polish Digital Mathematics Library

We prove that the one-point Lindelöfication of a discrete space of cardinality ω 1 is homeomorphic to a subspace of C p (X) for some hereditarily Lindelöf space X if the axiom [...] holds.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269487
@article{bwmeta1.element.doi-10_2478_s11533-013-0279-8,
     author = {Oleg Okunev},
     title = {The one-point Lindel\"ofication of an uncountable discrete space can be surlindel\"of},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {1750-1754},
     zbl = {1290.54009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0279-8}
}
Oleg Okunev. The one-point Lindelöfication of an uncountable discrete space can be surlindelöf. Open Mathematics, Tome 11 (2013) pp. 1750-1754. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0279-8/

[1] Arhangel’skii A.V., Some problems and lines of investigation in general topology, Comment. Math. Univ. Carolin., 1988, 29(4), 611–629

[2] Arhangel’skii A.V., Problems in C p-theory, In: Open Problems in Topology, North-Holland, Amsterdam-New York-Oxford-Tokyo, 1990, 601–616

[3] Arhangel’skii A.V., Topological Function Spaces, Math. Appl. (Soviet Ser.), 78, Kluwer, Dordrecht-Boston-London, 1992 http://dx.doi.org/10.1007/978-94-011-2598-7[Crossref]

[4] Arhangel’skii A.V., Uspenskii V.V., On the cardinality of Lindelöf subspaces of function spaces, Comment. Math. Univ. Carolin., 1986, 27(4), 673–676

[5] Engelking R., General Topology, 2nd ed., Sigma Ser. Pure Math., 6, Heldermann, Berlin, 1989

[6] Fremlin D.H., Consequences of Martin’s Axiom, Cambridge Tracts in Math., 84, Cambridge University Press, Cambridge, 1984 http://dx.doi.org/10.1017/CBO9780511896972[Crossref] | Zbl 0551.03033

[7] Fuchino S., Shelah S., Soukup L., Sticks and clubs, Ann. Pure Appl. Logic, 1997, 90(1–3), 57–77 http://dx.doi.org/10.1016/S0168-0072(97)00030-4[Crossref] | Zbl 0890.03023