Einstein-Weyl structures on lightlike hypersurfaces
Cyriaque Atindogbe ; Lionel Bérard-Bergery ; Carlos Ogouyandjou
Open Mathematics, Tome 11 (2013), p. 1850-1862 / Harvested from The Polish Digital Mathematics Library

We study Weyl structures on lightlike hypersurfaces endowed with a conformal structure of certain type and specific screen distribution: the Weyl screen structures. We investigate various differential geometric properties of Einstein-Weyl screen structures on lightlike hypersurfaces and show that, for ambient Lorentzian space ℝ1n+2 and a totally umbilical screen foliation, there is a strong interplay with the induced (Riemannian) Weyl-structure on the leaves.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269613
@article{bwmeta1.element.doi-10_2478_s11533-013-0278-9,
     author = {Cyriaque Atindogbe and Lionel B\'erard-Bergery and Carlos Ogouyandjou},
     title = {Einstein-Weyl structures on lightlike hypersurfaces},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {1850-1862},
     zbl = {1290.53068},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0278-9}
}
Cyriaque Atindogbe; Lionel Bérard-Bergery; Carlos Ogouyandjou. Einstein-Weyl structures on lightlike hypersurfaces. Open Mathematics, Tome 11 (2013) pp. 1850-1862. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0278-9/

[1] Atindogbe C., Duggal K.L., Conformal screen on lightlike hypersurfaces, Int. J. Pure Appl. Math., 2004, 11(4), 421–442 | Zbl 1057.53051

[2] Atindogbe C., Ezin J.-P., Tossa J., Pseudoinversion of degenerate metrics, Int. J. Math. Math. Sci., 2003, 55, 3479–3501 http://dx.doi.org/10.1155/S0161171203301309[Crossref] | Zbl 1052.53027

[3] Chrusciel P.T., Delay E., Galloway G.J., Howard R., Regularity of horizons and the area theorem, Ann. Henri Poincaré, 2001, 2(1), 109–178 http://dx.doi.org/10.1007/PL00001029[Crossref] | Zbl 0977.83047

[4] Duggal K.L., Bejancu A., Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Math. Appl., 364, Kluwer, Dordrecht, 1996 http://dx.doi.org/10.1007/978-94-017-2089-2[Crossref] | Zbl 0848.53001

[5] Gauduchon P., Structures de Weyl-Einstein, espaces de twisteurs et variétés de type S 1×S 3, J. Reine Angew. Math., 1995, 469, 1–50

[6] Ivanov S., Einstein-Weyl structures on compact conformal manifolds, Quart. J. Math. Oxford Ser., 1999, 50(200), 457–462 http://dx.doi.org/10.1093/qjmath/50.200.457[Crossref]

[7] Kupeli D.N., Singular Semi-Riemannian Geometry, Math. Appl., 366, Kluwer, Dordrecht, 1996 http://dx.doi.org/10.1007/978-94-015-8761-7[Crossref]

[8] LeBrun C., Mason L.J., The Einstein-Weyl equations, scattering maps, and holomorphic disks, Math. Res. Lett., 2009, 16(2), 291–301 [Crossref] | Zbl 1176.53071

[9] Pedersen H., Swann A., Riemannian submersions, four-manifolds and Einstein-Weyl geometry, Proc. London Math. Soc., 1993, 66(2), 381–399 http://dx.doi.org/10.1112/plms/s3-66.2.381[Crossref] | Zbl 0742.53014