Closure of dilates of shift-invariant subspaces
Moisés Soto-Bajo
Open Mathematics, Tome 11 (2013), p. 1785-1799 / Harvested from The Polish Digital Mathematics Library

Let V be any shift-invariant subspace of square summable functions. We prove that if for some A expansive dilation V is A-refinable, then the completeness property is equivalent to several conditions on the local behaviour at the origin of the spectral function of V, among them the origin is a point of A*-approximate continuity of the spectral function if we assume this value to be one. We present our results also in a more general setting of A-reducing spaces. We also prove that the origin is a point of A*-approximate continuity of the Fourier transform of any semiorthogonal tight frame wavelet if we assume this value to be zero.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269595
@article{bwmeta1.element.doi-10_2478_s11533-013-0275-z,
     author = {Mois\'es Soto-Bajo},
     title = {Closure of dilates of shift-invariant subspaces},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {1785-1799},
     zbl = {1315.42021},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0275-z}
}
Moisés Soto-Bajo. Closure of dilates of shift-invariant subspaces. Open Mathematics, Tome 11 (2013) pp. 1785-1799. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0275-z/

[1] Auscher P., Solution of two problems on wavelets, J. Geom. Anal., 1995, 5(2), 181–236 http://dx.doi.org/10.1007/BF02921675[Crossref] | Zbl 0843.42015

[2] Baggett L.W., Medina H.A., Merrill K.D., Generalized multi-resolution analyses and a construction procedure for all wavelet sets in ℂn, J. Fourier Anal. Appl., 1999, 5(6), 563–573 http://dx.doi.org/10.1007/BF01257191[Crossref] | Zbl 0972.42021

[3] Battle G., Phase space localization theorem for ondelettes, J. Math. Phys., 1989, 30(10), 2195–2196 http://dx.doi.org/10.1063/1.528544[Crossref] | Zbl 0694.46006

[4] de Boor C., DeVore R.A., Ron A., On the construction of multivariate (pre)wavelets, Constr. Approx., 1993, 9(2–3), 123–166 http://dx.doi.org/10.1007/BF01198001[Crossref] | Zbl 0773.41013

[5] de Boor C., DeVore R.A., Ron A., The structure of finitely generated shift-invariant spaces in L 2(ℂd), J. Funct. Anal., 1994, 119(1), 37–78 http://dx.doi.org/10.1006/jfan.1994.1003[Crossref]

[6] Bownik M., The structure of shift-invariant subspaces of L 2(ℂd), J. Funct. Anal., 2000, 177(2), 282–309 http://dx.doi.org/10.1006/jfan.2000.3635[Crossref]

[7] Bownik M., Intersection of dilates of shift-invariant spaces, Proc. Amer. Math. Soc., 2009, 137(2), 563–572 http://dx.doi.org/10.1090/S0002-9939-08-09682-2[Crossref] | Zbl 1162.42016

[8] Bownik M., Rzeszotnik Z., The spectral function of shift-invariant spaces, Michigan Math. J., 2003, 51(2), 387–414 http://dx.doi.org/10.1307/mmj/1060013204[Crossref] | Zbl 1059.42021

[9] Bownik M., Rzeszotnik Z., Speegle D., A characterization of dimension functions of wavelets, Appl. Comput. Harmon. Anal., 2001, 10(1), 71–92 http://dx.doi.org/10.1006/acha.2000.0327[Crossref] | Zbl 0979.42018

[10] Brandolini L., Garrigós G., Rzeszotnik Z., Weiss G., The behaviour at the origin of a class of band-limited wavelets, In: The Functional and Harmonic Analysis of Wavelets and Frames, San Antonio, January 13–14, 1999, Contemp. Math., 247, American Mathematical Society, Providence, 1999, 75–91 http://dx.doi.org/10.1090/conm/247/03798[Crossref] | Zbl 0956.42023

[11] Calogero A., Wavelets on general lattices, associated with general expanding maps of ℂd, Electron. Res. Announc. Amer. Math. Soc., 1999, 5, 1–10 http://dx.doi.org/10.1090/S1079-6762-99-00054-2[Crossref] | Zbl 0914.42026

[12] Cifuentes P., Kazarian K.S., San Antolín A., Characterization of scaling functions in a multiresolution analysis, Proc. Amer. Math. Soc., 2005, 133(4), 1013–1023 http://dx.doi.org/10.1090/S0002-9939-04-07786-X[Crossref] | Zbl 1065.42022

[13] Cifuentes P., Kazarian K.S., San Antolín A., Characterization of scaling functions, In: Wavelets and Splines, Athens, GA, May 16–19, 2005, Mod. Methods Math., Nashboro Press, Brentwood, 2006, 152–163 | Zbl 1099.65144

[14] Curry E., Low-pass filters and scaling functions for multivariable wavelets, Canad. J. Math., 2008, 60(2), 334–347 http://dx.doi.org/10.4153/CJM-2008-016-1[WoS][Crossref] | Zbl 1221.42060

[15] Dai X., Diao Y., Gu Q., Subspaces with normalized tight frame wavelets in ℝ, Proc. Amer. Math. Soc., 2002, 130(6), 1661–1667 http://dx.doi.org/10.1090/S0002-9939-01-06257-8[Crossref] | Zbl 1004.42024

[16] Dai X., Diao Y., Gu Q., Han D., Frame wavelets in subspaces of L 2(ℝd), Proc. Amer. Math. Soc., 2002, 130(11), 3259–3267 http://dx.doi.org/10.1090/S0002-9939-02-06498-5[Crossref] | Zbl 1004.42025

[17] Dai X., Diao Y., Gu Q., Han D., The existence of subspace wavelet sets, J. Comput. Appl. Math., 2003, 155(1), 83–90 http://dx.doi.org/10.1016/S0377-0427(02)00893-2[Crossref] | Zbl 1016.42020

[18] Dai X., Larson D.R., Speegle D.M., Wavelet sets in ℝd. II, In: Wavelets, Multiwavelets, and their Applications, San Diego, January 1997, Contemp. Math., 216, American Mathematical Society, Providence, 1998, 15–40 http://dx.doi.org/10.1090/conm/216/02962[Crossref]

[19] Dai X., Lu S., Wavelets in subspaces, Michigan Math. J., 1996, 43(1), 81–98 http://dx.doi.org/10.1307/mmj/1029005391[Crossref]

[20] Daubechies I., Ten Lectures on Wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math., 61, Society for Industrial and Applied Mathematics, Philadelphia, 1992 http://dx.doi.org/10.1137/1.9781611970104[Crossref]

[21] Dobric V., Gundy R., Hitczenko P., Characterizations of orthonormal scale functions: a probabilistic approach, J. Geom. Anal., 2000, 10(3), 417–434 http://dx.doi.org/10.1007/BF02921943[Crossref] | Zbl 0986.42021

[22] Dutkay D.E., Some equations relating multiwavelets and multiscaling functions, J. Funct. Anal., 2005, 226(1), 1–20 http://dx.doi.org/10.1016/j.jfa.2005.01.015[Crossref] | Zbl 1079.42025

[23] Gu Q., Han D., On multiresolution analysis (MRA) wavelets in ℝd, J. Fourier Anal. Appl., 2000, 6(4), 437–447 http://dx.doi.org/10.1007/BF02510148[Crossref] | Zbl 0964.42021

[24] Gu Q., Han D., Frames, modular functions for shift-invariant subspaces and FMRA wavelet frames, Proc. Amer. Math. Soc., 2005, 133(3), 815–825 http://dx.doi.org/10.1090/S0002-9939-04-07601-4[Crossref] | Zbl 1060.42027

[25] Ha Y.-H., Kang H., Lee J., Seo J.K., Unimodular wavelets for L 2 and the Hardy space H 2, Michigan Math. J., 1994, 41(2), 345–361 http://dx.doi.org/10.1307/mmj/1029005001[Crossref] | Zbl 0810.42016

[26] Hernández E., Wang X., Weiss G., Characterization of wavelets, scaling functions and wavelets associated with multiresolution analyses, In: Function Spaces, Interpolation Spaces, and Related Topics, Haifa, June 7–13, 1995, Israel Math. Conf. Proc., 13, Bar-Ilan University, Ramat Gan, 1999, 51–87 | Zbl 1057.42503

[27] Hernández E., Weiss G., A First Course on Wavelets, Stud. Adv. Math., CRC Press, Boca Raton, 1996 [Crossref] | Zbl 0885.42018

[28] Jia R.Q., Shen Z., Multiresolution and wavelets, Proc. Edinburgh Math. Soc., 1994, 37(2), 271–300 http://dx.doi.org/10.1017/S0013091500006076[Crossref] | Zbl 0809.42018

[29] Kazarian K.S., San Antolín A., Characterization of scaling functions in a frame multiresolution analysis in H G2, In: Topics in Classical Analysis and Applications in Honor of Daniel Waterman, World Scientific, Hackensack, 2008, 118–140 http://dx.doi.org/10.1142/9789812834447_0009[Crossref]

[30] Kim H.O., Kim R.Y., Lim J.K., On the spectrums of frame multiresolution analyses, J. Math. Anal. Appl., 2005, 305(2), 528–545 http://dx.doi.org/10.1016/j.jmaa.2004.11.050[Crossref] | Zbl 1061.42018

[31] Kim H.O., Lim J.K., Frame multiresolution analysis, Commun. Korean Math. Soc., 2000, 15(2), 285–308 | Zbl 0966.42023

[32] Lian Q.-F., Li Y.-Z., Reducing subspace frame multiresolution analysis and frame wavelets, Commun. Pure Appl. Anal., 2007, 6(3), 741–756 http://dx.doi.org/10.3934/cpaa.2007.6.741[Crossref]

[33] Lorentz R.A., Madych W.R., Sahakian A., Translation and dilation invariant subspaces of L 2(ℝ) and multiresolution analyses, Appl. Comput. Harmon. Anal., 1998, 5(4), 375–388 http://dx.doi.org/10.1006/acha.1998.0235[Crossref] | Zbl 0926.42020

[34] Madych W.R., Some elementary properties of multiresolution analyses of L 2(ℝn), In: Wavelets, Wavelet Anal. Appl., 2, Academic Press, Boston, 1992, 259–294 | Zbl 0760.41030

[35] Mallat S.G., Multiresolution approximations and wavelet orthonormal bases of L 2(ℝ), Trans. Amer. Math. Soc., 1989, 315(1), 69–87 | Zbl 0686.42018

[36] Meyer Y., Ondelettes et Opérateurs. I, Actualites Math., Hermann, Paris, 1990

[37] Natanson I.P., Theory of Functions of a Real Variable. II, Frederick Ungar, New York, 1961

[38] Révész Sz.Gy., San Antolín A., Equivalence of A-approximate continuity for self-adjoint expansive linear maps, Linear Algebra Appl., 2008, 429(7), 1504–1521 http://dx.doi.org/10.1016/j.laa.2008.04.028[WoS][Crossref] | Zbl 1159.26003

[39] Rzeszotnik Z., Calderón’s condition and wavelets, Collect. Math., 2001, 52(2), 181–191 | Zbl 0989.42017

[40] San Antolín A., Characterization of low pass filters in a multiresolution analysis, Studia Math., 2009, 190(2), 99–116 http://dx.doi.org/10.4064/sm190-2-1[Crossref] | Zbl 1166.42022

[41] San Antolín A., On the density order of the principal shift-invariant subspaces of L 2(ℝn), J. Approx. Theory, 2012, 164(8), 1007–1025 http://dx.doi.org/10.1016/j.jat.2012.04.003[WoS][Crossref] | Zbl 1257.46014

[42] Weiss G., Wilson E.N., The mathematical theory of wavelets, In: Twentieth Century Harmonic Analysis-A Celebration, Il Ciocco, July 2–15, 2000, NATO Sci. Ser. II Math. Phys. Chem., 33, Kluwer, Dordrecht, 2001, 329–366 http://dx.doi.org/10.1007/978-94-010-0662-0_15[Crossref]

[43] Wojtaszczyk P., A Mathematical Introduction to Wavelets, London Math. Soc. Stud. Texts, 37, Cambridge University Press, Cambridge, 1997 http://dx.doi.org/10.1017/CBO9780511623790[Crossref] | Zbl 0865.42026

[44] Zhou F.-Y., Li Y.-Z., Multivariate FMRAs and FMRA frame wavelets for reducing subspaces of L 2((ℝn), Kyoto J. Math., 2010, 50(1), 83–99 http://dx.doi.org/10.1215/0023608X-2009-006[WoS][Crossref] | Zbl 1228.42044