By virtue of convexity of Heinz means, in this paper we derive several refinements of Heinz norm inequalities with the help of the Jensen functional and its properties. In addition, we discuss another approach to Heinz operator means which is more convenient for obtaining the corresponding operator inequalities for positive invertible operators.
@article{bwmeta1.element.doi-10_2478_s11533-013-0270-4, author = {Mario Krni\'c and Josip Pe\v cari\'c}, title = {Improved Heinz inequalities via the Jensen functional}, journal = {Open Mathematics}, volume = {11}, year = {2013}, pages = {1698-1710}, zbl = {1295.47006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0270-4} }
Mario Krnić; Josip Pečarić. Improved Heinz inequalities via the Jensen functional. Open Mathematics, Tome 11 (2013) pp. 1698-1710. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0270-4/
[1] Bhatia R., Matrix Analysis, Grad. Texts in Math., 169, Springer, New York, 1997
[2] Bhatia R., Positive Definite Matrices, Princeton Ser. Appl. Math., Princeton University Press, Princeton, 2007 | Zbl 1125.15300
[3] Bhatia R., Davis C., More matrix forms of the arithmetic-geometric mean inequality, SIAM J. Matrix Anal. Appl., 1993, 14(1), 132–136 http://dx.doi.org/10.1137/0614012 | Zbl 0767.15012
[4] Dragomir S.S., Pečarić J., Persson L.E., Properties of some functionals related to Jensen’s inequality, Acta Math. Hungar., 1996, 70(1–2), 129–143 http://dx.doi.org/10.1007/BF00113918 | Zbl 0847.26013
[5] Furuta T., Mićić Hot J., Pečarić J., Seo Y., Mond-Pečaric Method in Operator Inequalities, Monographs in Inequalities, 1, Element, Zagreb, 2005 | Zbl 1135.47012
[6] Hiai F., Kosaki H., Means for matrices and comparison of their norms, Indiana Univ. Math. J., 1999, 48(3), 899–936 http://dx.doi.org/10.1512/iumj.1999.48.1665 | Zbl 0934.15023
[7] Kittaneh F., On the convexity of the Heinz means, Integral Equations Operator Theory, 2010, 68(4), 519–527 http://dx.doi.org/10.1007/s00020-010-1807-6 | Zbl 1230.47026
[8] Kittaneh F., Krnić M., Lovričević N., Pečarić J., Improved arithmetic-geometric and Heinz means inequalities for Hilbert space operators, Publ. Math. Debrecen, 2012, 80(3–4), 465–478 http://dx.doi.org/10.5486/PMD.2012.5193 | Zbl 1275.47038
[9] Kittaneh F., Manasrah Y., Improved Young and Heinz inequalities for matrices, J. Math. Anal. Appl., 2010, 361(1), 262–269 http://dx.doi.org/10.1016/j.jmaa.2009.08.059 | Zbl 1180.15021
[10] Kittaneh F., Manasrah Y., Reverse Young and Heinz inequalities for matrices, Linear Multilinear Algebra, 2011, 59(9), 1031–1037 http://dx.doi.org/10.1080/03081087.2010.551661 | Zbl 1225.15022
[11] Klaričić Bakula M., Matić M., Pečarić J., On inequalities complementary to Jensen’s inequality, Mat. Bilten, 2008, 32, 17–27 | Zbl 1265.26073
[12] Krnić M., Lovričević N., Pečarić J., Jensen’s operator and applications to mean inequalities for operators in Hilbert space, Bull. Malays. Math. Sci. Soc., 2012, 35(1), 1–14 | Zbl 1248.47018
[13] Kubo F., Ando T., Means of positive linear operators, Math. Ann., 1979/80, 246(3), 205–224 http://dx.doi.org/10.1007/BF01371042 | Zbl 0412.47013
[14] Mitrinović D.S., Pečarić J.E., Fink A.M., Math. Appl. (East European Ser.), 61, Classical and New Inequalities in Analysis, Kluwer, Dordrecht, 1993 | Zbl 0771.26009
[15] Simon B., Trace Ideals and Their Applications, London Math. Soc. Lecture Note Ser., 35, Cambridge University Press, Cambridge-New York, 1979 | Zbl 0423.47001