The generalized Laguerre inequalities and functions in the Laguerre-Pólya class
George Csordas ; Anna Vishnyakova
Open Mathematics, Tome 11 (2013), p. 1643-1650 / Harvested from The Polish Digital Mathematics Library

The principal goal of this paper is to show that the various sufficient conditions for a real entire function, φ(x), to belong to the Laguerre-Pólya class (Definition 1.1), expressed in terms of Laguerre-type inequalities, do not require the a priori assumptions about the order and type of φ(x). The proof of the main theorem (Theorem 2.3) involving the generalized real Laguerre inequalities, is based on a beautiful geometric result, the Borel-Carathédodory Inequality (Theorem 2.1), and on a deep theorem of Lindelöf (Theorem 2.2). In case of the complex Laguerre inequalities (Theorem 3.2), the proof is sketched for it requires a slightly more delicate analysis. Section 3 concludes with some other cognate results, an open problem and a conjecture which is based on Cardon’s recent, ingenious extension of the Laguerre-type inequalities.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269318
@article{bwmeta1.element.doi-10_2478_s11533-013-0269-x,
     author = {George Csordas and Anna Vishnyakova},
     title = {The generalized Laguerre inequalities and functions in the Laguerre-P\'olya class},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {1643-1650},
     zbl = {1291.30167},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0269-x}
}
George Csordas; Anna Vishnyakova. The generalized Laguerre inequalities and functions in the Laguerre-Pólya class. Open Mathematics, Tome 11 (2013) pp. 1643-1650. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0269-x/

[1] Boas R.P. Jr., Entire Functions, Academic Press, New York, 1954

[2] Cardon D.A., Extended Laguerre inequalities and a criterion for real zeros, In: Progress in Analysis and its Applications, London, July 13–18, 2009, World Scientific, Hackensack, 2010, 143–149 | Zbl 1262.30004

[3] Craven T., Csordas G., Iterated Laguerre and Turán inequalities, JIPAM. J. Inequal. Pure Appl. Math., 2002, 3, #39 | Zbl 1007.30007

[4] Csordas G., Varga R.S., Necessary and sufficient conditions and the Riemann Hypothesis, Adv. in Appl. Math., 1990, 11(3), 328–357 http://dx.doi.org/10.1016/0196-8858(90)90013-O | Zbl 0707.11062

[5] Dilcher K., Stolarsky K.B., On a class of nonlinear differential operators acting on polynomials, J. Math. Anal. Appl., 1992, 170(2), 382–400 http://dx.doi.org/10.1016/0022-247X(92)90025-9 | Zbl 0768.30005

[6] Goldberg A.A., Ostrovskii I.V., Value Distribution of Meromorphic Functions, Transl. Math. Monogr., 236, American Mathematical Society, Providence, 2008 | Zbl 1152.30026

[7] Jensen J.L.W.V., Recherches sur la théorie des équations, Acta Math., 1913, 36(1), 181–195 http://dx.doi.org/10.1007/BF02422380 | Zbl 43.0158.01

[8] Koosis P., The Logarithmic Integral I, Cambridge Stud. Adv. Math., 12, Cambridge University Press, Cambridge, 1988 http://dx.doi.org/10.1017/CBO9780511566196 | Zbl 0665.30038

[9] Levin B.Ja., Distribution of Zeros of Entire Functions, Transl. Math. Monogr., 5, American Mathematical Society, Providence, 1980

[10] Obreschkoff N., Verteilung und Berechnung der Nullstellen reeller Polynome, VEB Deutscher Verlag der Wissenschaften, Berlin, 1963 | Zbl 0156.28202

[11] Patrick M.L., Extensions of inequalities of the Laguerre and Turán type, Pacific J. Math., 1973, 44(2), 675–682 http://dx.doi.org/10.2140/pjm.1973.44.675 | Zbl 0265.33012

[12] Pólya G., Collected Papers, II, Mathematicians of Our Time, 8, MIT Press, Cambridge, 1974

[13] Pólya G., Schur J., Über zwei Arten von Faktorenfolgen in der Theorie der algebraischen Gleichungen, J. Reine Angew. Math., 1914, 144, 89–113 | Zbl 45.0176.01