G-narrow operators and G-rich subspaces
Tetiana Ivashyna
Open Mathematics, Tome 11 (2013), p. 1677-1688 / Harvested from The Polish Digital Mathematics Library

Let X and Y be Banach spaces. An operator G: X → Y is a Daugavet center if ‖G +T‖ = ‖G‖+‖T‖ for every rank-1 operator T. For every Daugavet center G we consider a certain set of operators acting from X, so-called G-narrow operators. We prove that if J is the natural embedding of Y into a Banach space E, then E can be equivalently renormed so that an operator T is (J ○ G)-narrow if and only if T is G-narrow. We study G-rich subspaces of X: Z ⊂ X is called G-rich if the quotient map q: X → X/Z is G-narrow.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269043
@article{bwmeta1.element.doi-10_2478_s11533-013-0266-0,
     author = {Tetiana Ivashyna},
     title = {G-narrow operators and G-rich subspaces},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {1677-1688},
     zbl = {1304.46011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0266-0}
}
Tetiana Ivashyna. G-narrow operators and G-rich subspaces. Open Mathematics, Tome 11 (2013) pp. 1677-1688. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0266-0/

[1] Bosenko T.V., Strong Daugavet operators and narrow operators with respect to Daugavet centers, Vestnik Khar’kov. Univ., 2010, 931(62), 5–19 | Zbl 1240.46018

[2] Bosenko T., Kadets V., Daugavet centers, Zh. Mat. Fiz. Anal. Geom., 2010, 6(1), 3–20

[3] Kadets M.I., Kadets V.M., Series in Banach Spaces, Oper. Theory Adv. Appl., 94, Birkhäuser, Basel, 1997 | Zbl 0876.46009

[4] Kadets V.M., Some remarks concerning the Daugavet equation, Quaestiones Math., 1996, 19(1–2), 225–235 http://dx.doi.org/10.1080/16073606.1996.9631836

[5] Kadets V.M., Popov M.M., Some stability theorems on narrow operators acting on L1 and C(K), Mat. Fiz. Anal. Geom., 2003, 10(1), 49–60 | Zbl 1069.46006

[6] Kadets V.M., Shvidkoy R.V., Sirotkin G.G., Werner D., Banach spaces with the Daugavet property, Trans. Amer. Math. Soc., 2000, 352(2), 855–873 http://dx.doi.org/10.1090/S0002-9947-99-02377-6 | Zbl 0938.46016

[7] Kadets V.M., Shvidkoy R.V., Werner D., Narrow operators and rich subspaces of Banach spaces with the Daugavet property, Studia Math., 2001, 147(3), 269–298 http://dx.doi.org/10.4064/sm147-3-5 | Zbl 0986.46010