Comments on the height reducing property
Shigeki Akiyama ; Toufik Zaimi
Open Mathematics, Tome 11 (2013), p. 1616-1627 / Harvested from The Polish Digital Mathematics Library

A complex number α is said to satisfy the height reducing property if there is a finite subset, say F, of the ring ℤ of the rational integers such that ℤ[α] = F[α]. This property has been considered by several authors, especially in contexts related to self affine tilings and expansions of real numbers in non-integer bases. We prove that a number satisfying the height reducing property, is an algebraic number whose conjugates, over the field of the rationals, are all of modulus one, or all of modulus greater than one. Expecting the converse of the last statement is true, we show some theoretical and experimental results, which support this conjecture.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269056
@article{bwmeta1.element.doi-10_2478_s11533-013-0262-4,
     author = {Shigeki Akiyama and Toufik Zaimi},
     title = {Comments on the height reducing property},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {1616-1627},
     zbl = {06236722},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0262-4}
}
Shigeki Akiyama; Toufik Zaimi. Comments on the height reducing property. Open Mathematics, Tome 11 (2013) pp. 1616-1627. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0262-4/

[1] Akiyama S., Borbély T., Brunotte H., Peth"o A., Thuswaldner J.M., Generalized radix representations and dynamical systems. I, Acta Math. Hungar., 2005, 108(3), 207–238 http://dx.doi.org/10.1007/s10474-005-0221-z | Zbl 1110.11003

[2] Akiyama S., Drungilas P., Jankauskas J., Height reducing problem on algebraic integers, Funct. Approx. Comment. Math., 2012, 47(1), 105–119 http://dx.doi.org/10.7169/facm/2012.47.1.9 | Zbl 1290.11144

[3] Akiyama S., Scheicher K., From number systems to shift radix systems, Nihonkai Math. J., 2005, 16(2), 95–106 | Zbl 1217.11008

[4] Baker A., The theory of linear forms in logarithms, In: Transcendence Theory: Advances and Applications, Cambridge, January–February, 1976, Academic Press, London, 1977, 1–27

[5] Baker A., Wüstholz G., Logarithmic forms and group varieties, J. Reine Angew. Math., 1993, 442, 19–62 | Zbl 0788.11026

[6] Dubickas A., Roots of polynomials with dominant term, Int. J. Number Theory, 2001, 7(5), 1217–1228 http://dx.doi.org/10.1142/S1793042111004575 | Zbl 1225.11132

[7] Frougny C., Steiner W., Minimal weight expansions in Pisot bases, J. Math. Cryptol., 2008, 2(4), 365–392 http://dx.doi.org/10.1515/JMC.2008.017 | Zbl 1170.11003

[8] Lagarias J.C., Wang Y., Integral self-affine tiles in ℝn. Part II: Lattice tilings, J. Fourier Anal. Appl., 1997, 3(1), 83–102 http://dx.doi.org/10.1007/BF02647948 | Zbl 0893.52015

[9] Lenstra A.K., Lenstra H.W. Jr., Lovász L., Factoring polynomials with rational coefficients, Math. Ann., 1982, 261(4), 515–534 http://dx.doi.org/10.1007/BF01457454 | Zbl 0488.12001

[10] Mahler K., A remark on Kronecker’s theorem, Enseignement Math., 1966, 12, 183–189 | Zbl 0154.04702

[11] Narkiewicz W., Elementary and Analytic Theory of Algebraic Numbers, 3rd ed., Springer Monogr. Math., Springer, Berlin, 2004 http://dx.doi.org/10.1007/978-3-662-07001-7

[12] Vorselen T., On Kronecker’s Theorem over the Adéles, MSc thesis, Universiteit Leiden, 2010, preprint available at http://www.math.leidenuniv.nl/scripties/VorselenMaster.pdf

[13] Waldschmidt M., A lower bound for linear forms in logarithms, Acta Arith., 1980, 37, 257–283 | Zbl 0357.10017

[14] de Weger B.M.M., Algorithms for Diophantine Equations, CWI Tract, 65, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1989