Towards the classification of weak Fano threefolds with ρ = 2
Joseph Cutrone ; Nicholas Marshburn
Open Mathematics, Tome 11 (2013), p. 1552-1576 / Harvested from The Polish Digital Mathematics Library

In this paper, examples of type II Sarkisov links between smooth complex projective Fano threefolds with Picard number one are provided. To show examples of these links, we study smooth weak Fano threefolds X with Picard number two and with a divisorial extremal ray. We assume that the pluri-anticanonical morphism of X contracts only a finite number of curves. The numerical classification of these particular smooth weak Fano threefolds is completed and the geometric existence of some numerical cases is proven.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269795
@article{bwmeta1.element.doi-10_2478_s11533-013-0261-5,
     author = {Joseph Cutrone and Nicholas Marshburn},
     title = {Towards the classification of weak Fano threefolds with $\rho$ = 2},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {1552-1576},
     zbl = {1308.14013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0261-5}
}
Joseph Cutrone; Nicholas Marshburn. Towards the classification of weak Fano threefolds with ρ = 2. Open Mathematics, Tome 11 (2013) pp. 1552-1576. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0261-5/

[1] Arap M., Cutrone J., Marshburn N., On the existence of certain weak Fano threefolds of Picard number two, preprint available at http://arxiv.org/abs/1112.2611v1

[2] Batyrev V.V., Stringy Hodge numbers of varieties with Gorenstein canonical singularities, In: Integrable Systems and Algebraic Geometry, Kobe/Kyoto, June 30–July 4/July 7–11, 1997, World Scientific, River Edge, 1998, 1–32 | Zbl 0963.14015

[3] Blanc J., Lamy S., Weak Fano threefolds obtained by blowing-up a space curve and construction of Sarkisov links, Proc. Lond. Math. Soc., 2012, 105(5), 1047–1075 http://dx.doi.org/10.1112/plms/pds023 | Zbl 1258.14015

[4] Cheltsov I., Shramov C., Cremona groups and the icosahedron, preprint | Zbl 1328.14003

[5] Clemens C.H., Griffiths P.A., The intermediate Jacobian of the cubic threefold, Ann. of Math., 1972, 95, 281–356 http://dx.doi.org/10.2307/1970801 | Zbl 0214.48302

[6] Hartshorne R., Algebraic Geometry, Grad. Texts in Math., 52, Springer, New York, 1977 http://dx.doi.org/10.1007/978-1-4757-3849-0

[7] Iskovskikh V.A., Fano threefolds. I/II, Izv. Akad. Nauk SSSR Ser. Mat., 1977/1978, 41(3)/42(3), 516–562/506–549 (in Russian)

[8] Iskovskikh V.A., Prokhorov Yu.G., Fano Varieties, Algebraic Geometry, V, Encyclopaedia Math. Sci., 47, Springer, Berlin, 1999

[9] Jahnke P., Peternell T., Almost del Pezzo manifolds, Adv. Geom., 2008, 8(3), 387–411 http://dx.doi.org/10.1515/ADVGEOM.2008.026 | Zbl 1149.14035

[10] Jahnke P., Peternell T., Radloff I., Threefolds with big and nef anticanonical bundles I, Math. Ann., 2005, 333(3), 569–631 http://dx.doi.org/10.1007/s00208-005-0682-y | Zbl 1081.14054

[11] Jahnke P., Peternell T., Radloff I., Threefolds with big and nef anticanonical bundles II, Cent. Eur. J. Math., 2011, 9(3), 449–488 http://dx.doi.org/10.2478/s11533-011-0023-1 | Zbl 1250.14030

[12] Kaloghiros A.-S., A classification of terminal quartic 3-folds and applications to rationality questions, Math. Ann., 2012, 354(1), 263–296 http://dx.doi.org/10.1007/s00208-011-0658-z | Zbl 1264.14054

[13] Knutsen A.L., Smooth curves on projective K3 surfaces, Math. Scand., 2002, 90(2), 215–231 | Zbl 1021.14013

[14] Kollár J., Flops, Nagoya Math. J., 1989, 113, 15–36

[15] Ottaviani G., On 3-folds in ℙ5 which are scrolls, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1992, 19(3), 451–471 | Zbl 0786.14026

[16] Pukhlikov A.V., Birational automorphisms of a three-dimensional quartic with a simple singularity, Math. USSR-Sb., 1989, 63(2), 457–482 http://dx.doi.org/10.1070/SM1989v063n02ABEH003285 | Zbl 0668.14007

[17] Saint-Donat B., Projective models of K − 3 surfaces, Amer. J. Math., 1974, 96, 602–639 http://dx.doi.org/10.2307/2373709 | Zbl 0301.14011

[18] Shin K.-H., 3-dimensional Fano varieties with canonical singularities, Tokyo J. Math., 1989, 12(2), 375–385 http://dx.doi.org/10.3836/tjm/1270133187 | Zbl 0708.14025

[19] Takagi H., On classification of ℚ-Fano 3-folds of Gorenstein index 2. I/II, Nagoya Math. J., 2002, 167, 117–155/157–216 | Zbl 1048.14022

[20] Takeuchi K., Some birational maps of Fano 3-folds, Compositio Math., 1989, 71(3), 265–283 | Zbl 0712.14025

[21] Takeuchi K., Weak Fano threefolds with del Pezzo fibration, preprint available at http://arxiv.org/abs/0910.2188v1