A Hardy-type inequality with singular kernels at zero and on the boundary ∂Ω is proved. Sharpness of the inequality is obtained for Ω= B 1(0).
@article{bwmeta1.element.doi-10_2478_s11533-013-0260-6, author = {Alexander Fabricant and Nikolai Kutev and Tsviatko Rangelov}, title = {Hardy-type inequality with double singular kernels}, journal = {Open Mathematics}, volume = {11}, year = {2013}, pages = {1689-1697}, zbl = {1281.26013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0260-6} }
Alexander Fabricant; Nikolai Kutev; Tsviatko Rangelov. Hardy-type inequality with double singular kernels. Open Mathematics, Tome 11 (2013) pp. 1689-1697. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0260-6/
[1] Adimurthi, Chaudhuri N., Ramaswamy M., An improved Hardy-Sobolev inequality and its application, Proc. Amer. Math. Soc., 2002, 130(2), 489–505 http://dx.doi.org/10.1090/S0002-9939-01-06132-9 | Zbl 0987.35049
[2] Alvino A., Volpicelli R., Volzone B., On Hardy inequalities with a remainder term, Ric. Mat., 2010, 59(2), 265–280 http://dx.doi.org/10.1007/s11587-010-0086-5 | Zbl 1204.35079
[3] Brezis H., Marcus M., Hardy’s inequalities revisited, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1997, 25(1–2), 217–237
[4] Brezis H., Vázquez J.L., Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid, 1997, 10(2), 443–469 | Zbl 0894.35038
[5] Filippas S., Tertikas A., Optimizing improved Hardy inequalities, J. Funct. Anal., 2002, 192(1), 186–233 http://dx.doi.org/10.1006/jfan.2001.3900 | Zbl 1030.26018
[6] Ghoussoub N., Moradifam A., On the best possible remaining term in the Hardy inequality, Proc. Natl. Acad. Sci. USA, 2008, 105(37), 13746–13751 http://dx.doi.org/10.1073/pnas.0803703105 | Zbl 1205.26033
[7] Gradsteyn I.S., Ryzhik I.M., Table of Integrals, Series and Products, Academic Press, New York, 1980
[8] Maz’ja V.G., Sobolev Spaces, Springer Ser. Soviet Math., Springer, Berlin, 1985
[9] Nazarov A.I., Dirichlet and Neumann problems to critical Emden-Fowler type equations, J. Global. Optim., 2008, 40(1–3), 289–303 http://dx.doi.org/10.1007/s10898-007-9193-6 | Zbl 1295.49003
[10] Pinchover Y., Tintarev K., Existence of minimizers for Schrödinger operators under domain perturbations with application to Hardy’s inequality, Indiana Univ. Math. J., 2005, 54(4), 1061–1074 http://dx.doi.org/10.1512/iumj.2005.54.2705 | Zbl 1213.35216
[11] Shen Y., Chen Z., Sobolev-Hardy space with general weight, J. Math. Anal. Appl., 2006, 320(2), 675–690 http://dx.doi.org/10.1016/j.jmaa.2005.07.044 | Zbl 1121.46032