Global and exponential attractors for a Caginalp type phase-field problem
Brice Bangola
Open Mathematics, Tome 11 (2013), p. 1651-1676 / Harvested from The Polish Digital Mathematics Library

We deal with a generalization of the Caginalp phase-field model associated with Neumann boundary conditions. We prove that the problem is well posed, before studying the long time behavior of solutions. We establish the existence of the global attractor, but also of exponential attractors. Finally, we study the spatial behavior of solutions in a semi-infinite cylinder, assuming that such solutions exist.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269208
@article{bwmeta1.element.doi-10_2478_s11533-013-0258-0,
     author = {Brice Bangola},
     title = {Global and exponential attractors for a Caginalp type phase-field problem},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {1651-1676},
     zbl = {1284.35083},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0258-0}
}
Brice Bangola. Global and exponential attractors for a Caginalp type phase-field problem. Open Mathematics, Tome 11 (2013) pp. 1651-1676. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0258-0/

[1] Babin A., Nicolaenko B., Exponential attractors of reaction-diffusion systems in an unbounded domain, J. Dynam. Differential Equations, 1995, 7(4), 567–590 http://dx.doi.org/10.1007/BF02218725 | Zbl 0846.35061

[2] Bates P.W., Zheng S.M., Inertial manifolds and inertial sets for the phase-field equations, J. Dynam. Differential Equations, 1992, 4(2), 375–398 http://dx.doi.org/10.1007/BF01049391 | Zbl 0758.35040

[3] Brezis H., Analyse Fonctionnelle, Collect. Math. Appl. Maitrise, Masson, Paris, 1983 | Zbl 0511.46001

[4] Brochet D., Hilhorst D., Universal attractor and inertial sets for the phase field model, Appl. Math. Lett., 1991, 4(6), 59–62, 1991 http://dx.doi.org/10.1016/0893-9659(91)90076-8 | Zbl 0773.35028

[5] Brochet D., Hilhorst D., Chen X., Finite-dimensional exponential attractor for the phase field model, Appl. Anal., 1993, 49(3–4), 197–212 http://dx.doi.org/10.1080/00036819108840173 | Zbl 0790.35052

[6] Brochet D., Hilhorst D., Novick-Cohen A., Finite-dimensional exponential attractor for a model for order-disorder and phase separation, Appl. Math. Lett., 1994, 7(3), 83–87 http://dx.doi.org/10.1016/0893-9659(94)90118-X | Zbl 0803.35076

[7] Caginalp G., An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 1986, 92(3), 205–245 http://dx.doi.org/10.1007/BF00254827 | Zbl 0608.35080

[8] Caginalp G., The role of microscopic anisotropy in the macroscopic behavior of a phase boundary, Ann. Physics, 1986, 172(1), 136–155 http://dx.doi.org/10.1016/0003-4916(86)90022-9

[9] Cherfils L., Miranville A., Some results on the asymptotic behavior of the Caginalp system with singular potentials, Adv. Math. Sci. Appl., 2007, 17(1), 107–129 | Zbl 1145.35042

[10] Cherfils L., Miranville A., On the Caginalp system with dynamic boundary conditions and singular potentials, Appl. Math., 2009, 54(2), 89–115 http://dx.doi.org/10.1007/s10492-009-0008-6 | Zbl 1212.35012

[11] Christov C.I., Jordan P.M., Heat conduction paradox involving second-sound propagation in moving media, Phys. Rev. Lett., 2005, 94(15), #154301 http://dx.doi.org/10.1103/PhysRevLett.94.154301

[12] Conti M., Gatti S., Miranville A., Asymptotic behavior of the Caginalp phase-field system with coupled dynamic boundary conditions, Discrete Contin. Dyn. Syst. Ser., 2012, S5(3), 485–505 | Zbl 1244.35067

[13] Eden A., Foias C., Nicolaenko B., Temam R., Exponential Attractors for Dissipative Evolution Equations, RAM Res. Appl. Math., 37, Masson/John Wiley & Sons, Paris/Chichester, 1994

[14] Fabrie P., Galusinski C., Exponential attractors for a partially dissipative reaction system, Asymptotic Anal., 1996, 12(4), 329–354 | Zbl 1028.35026

[15] Flavin J.N., Knops R.J., Payne L.E., Decay estimates for the constrained elastic cylinder of variable cross section, Quart. Appl. Math., 1989, 47(2), 325–350 | Zbl 0706.73015

[16] Gurtin M.E., Chen P.J., On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys., 1968, 19(4), 614–627 http://dx.doi.org/10.1007/BF01594969 | Zbl 0159.15103

[17] Landau L.D., Lifshitz E.M., Statistical Physics I, 3rd ed., Butterworth-Heinemann, Oxford, 1980 | Zbl 0080.19702

[18] Lions J.-L., Magenes E., Problèmes aux Limites non Homogènes et Applications, 2, Travaux et Recherches Mathématiques, 18, Dunod, Paris, 1968 | Zbl 0197.06701

[19] Miranville A., Exponential attractors for a class of evolution equations by a decomposition method, C. R. Acad. Sci. Paris Sér. I Math., 1999, 328(2), 145–150 http://dx.doi.org/10.1016/S0764-4442(99)80153-0 | Zbl 1101.35334

[20] Miranville A., Some models of Cahn-Hilliard equations in nonisotropic media, M2AN Math. Model. Numer. Anal., 2000, 34(3), 539–554 http://dx.doi.org/10.1051/m2an:2000155 | Zbl 0965.35170

[21] Miranville A., Some mathematical models in phase transition, Ravello, 2009 (lecture notes)

[22] Miranville A., Quintanilla R., A generalization of the Caginalp phase-field system based on the Cattaneo law, Nonlinear Anal., 2009, 71(5–6), 2278–2290 http://dx.doi.org/10.1016/j.na.2009.01.061 | Zbl 1167.35304

[23] Miranville A., Quintanilla R., Some generalizations of the Caginalp phase-field system, Appl. Anal., 2009, 88(6), 897–894 http://dx.doi.org/10.1080/00036810903042182 | Zbl 1178.35194

[24] Miranville A., Quintanilla R., A Caginalp phase-field system with a nonlinear coupling, Nonlinear Anal. Real World Appl., 2010, 11(4), 2849–2861 http://dx.doi.org/10.1016/j.nonrwa.2009.10.008 | Zbl 1197.35082

[25] Miranville A., Zelik S., Attractors for dissipative partial differential equations in bounded and unbounded domains, In: Handbook of Differential Equations: Evolutionary Equations, IV, Handb. Diff. Equ., Elsevier/North-Holland, Amsterdam, 2008, 103–200 http://dx.doi.org/10.1016/S1874-5717(08)00003-0

[26] Quintanilla R., Spatial stability for the quasi-static problem of thermoelasticity, J. Elasticity, 2004, 76(2), 93–105 http://dx.doi.org/10.1007/s10659-004-3334-7 | Zbl 1060.74020

[27] Temam R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed., Appl. Math. Sci., 68, Springer, New York, 1997 | Zbl 0871.35001