The influence of emission levels on the concentrations of four important air pollutants (ammonia, ozone, ammonium sulphate and ammonium nitrate) over three European cities (Milan, Manchester, and Edinburgh) with different geographical locations is considered. Sensitivity analysis of the output of the Unified Danish Eulerian Model according to emission levels is provided. The Sobol’ variance-based approach for global sensitivity analysis has been applied to compute the corresponding sensitivity measures. To measure the influence of the variation of emission levels over the pollutants concentrations the Sobol’ global sensitivity indices are estimated using efficient techniques for small sensitivity indices to avoid the effect of loss of accuracy. Theoretical studies, as well as, practical computations are performed in order to analyze efficiency of various variance reduction techniques for computing small indices. The importance of accurate estimation of small sensitivity indices is analyzed. It is shown that the correlated sampling technique for small sensitivity indices gives reliable results for the full set of indices. Its superior efficiency is studied in details.
@article{bwmeta1.element.doi-10_2478_s11533-013-0256-2, author = {Ivan Dimov and Raya Georgieva and Tzvetan Ostromsky and Zahari Zlatev}, title = {Sensitivity studies of pollutant concentrations calculated by the UNI-DEM with respect to the input emissions}, journal = {Open Mathematics}, volume = {11}, year = {2013}, pages = {1531-1545}, zbl = {1321.92081}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0256-2} }
Ivan Dimov; Raya Georgieva; Tzvetan Ostromsky; Zahari Zlatev. Sensitivity studies of pollutant concentrations calculated by the UNI-DEM with respect to the input emissions. Open Mathematics, Tome 11 (2013) pp. 1531-1545. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0256-2/
[1] Borgonovo E., A new uncertainty importance measure, Reliability Engineering & System Safety, 2007, 92(6), 771–784 http://dx.doi.org/10.1016/j.ress.2006.04.015
[2] Dimov I.T., Monte Carlo Methods for Applied Scientists, World Scientific, Hackensack, 2008 | Zbl 1140.65008
[3] Dimov I., Faragó I., Havasi Á., Zlatev Z., Operator splitting and commutativity analysis in the Danish Eulerian Model, Math. Comput. Simulation, 2004, 67(3), 217–233 http://dx.doi.org/10.1016/j.matcom.2004.06.017 | Zbl 1063.92051
[4] Dimov I., Georgieva R., Ivanovska S., Ostromsky Tz., Zlatev Z., Studying the sensitivity of pollutants’ concentrations caused by variations of chemical rates, J. Comput. Appl. Math., 2010, 235(2), 391–402 http://dx.doi.org/10.1016/j.cam.2010.05.041 | Zbl 1196.92039
[5] Dimov I.T., Ostromsky Tz., Zlatev Z., Challenges in using splitting techniques for large-scale environmental modeling, In: Advances in Air Pollution Modeling for Environmental Security, Borovetz, 8–12 May, 2004, NATO Sci. Ser. IV, 54, Springer, Dordrecht, 2005, 115–132 http://dx.doi.org/10.1007/1-4020-3351-6_11
[6] Efron B., Stein C., The jackknife estimate of variance, Ann. Statist., 1981, 9(3), 586–596 http://dx.doi.org/10.1214/aos/1176345462 | Zbl 0481.62035
[7] Helton J.C., Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive waste disposal, Reliability Engineering & System Safety, 1993, 42(2–3), 327–367 http://dx.doi.org/10.1016/0951-8320(93)90097-I
[8] Hesstvedt E., Hov Ø., Isaksen I.S.A., Quasi-steady-state approximations in air pollution modeling: Comparison of two numerical schemes for oxidant prediction, International Journal of Chemical Kinetics, 1978, 10(9), 971–994 http://dx.doi.org/10.1002/kin.550100907
[9] Homma T., Saltelli A., Importance measures in global sensitivity analysis of nonlinear models, Reliability Engineering & System Safety, 1996, 52(1), 1–17 http://dx.doi.org/10.1016/0951-8320(96)00002-6
[10] Iman R.L., Hora S.C., A robust measure of uncertainty importance for use in fault tree system analysis, Risk Analysis, 1990, 10(3), 401–406, 1990 http://dx.doi.org/10.1111/j.1539-6924.1990.tb00523.x
[11] Ishigami T., Homma T., An importance quantification technique in uncertainty analysis for computer models, In: Proceedings of the First International Symposium on Uncertainty Modeling and Analysis, IEEE Computer Society Press, Los Alamitos, 1990, 398–403
[12] Marchuk G.I., Mathematical Modeling for the Problem of the Environment, Stud. Math. Appl., 16, North-Holland, Amsterdam, 1985
[13] Ostromsky Tz., Dimov I., Georgieva R., Zlatev Z., Air pollution modelling, sensitivity analysis and parallel implementation, International Journal of Environment and Pollution, 2011, 46(1–2), 83–96 http://dx.doi.org/10.1504/IJEP.2011.042610
[14] Ostromsky Tz., Dimov I., Georgieva R., Zlatev Z., Parallel computation of sensitivity analysis data for the Danish Eulerian Model, In: Large-Scale Scientific Computing, Sozopol, June 6–10, 2011, Lecture Notes in Comput. Sci., 7116, Springer, Heidelberg, 2012, 307–315 http://dx.doi.org/10.1007/978-3-642-29843-1_35
[15] Ostromsky Tz., Dimov I., Marinov P., Georgieva R., Zlatev Z., Advanced sensitivity analysis of the Danish Eulerian Model in parallel and grid environment, In: Proceedings of the Third International Conference AMiTaNS’11, Albena, June 20–25, 2011, AIP Conf. Proc., 1404, American Institute of Physics, Melville, 2011, 225–232
[16] Saltelli A., Making best use of model evaluations to compute sensitivity indices, Comput. Phys. Commun., 2002, 145(2), 280–297 http://dx.doi.org/10.1016/S0010-4655(02)00280-1 | Zbl 0998.65065
[17] Saltelli A., Chan K., Scott E.M. (Eds.), Sensitivity Analysis, Wiley Ser. Probab. Stat., John Wiley & Sons, Chichester, 2000 | Zbl 0961.62091
[18] Saltelli A., Ratto M., Andres T., Campolongo F., Cariboni J., Gatelli D., Saisana M., Tarantola S., Global Sensitivity Analysis. The Primer, John Wiley & Sons, Chichester, 2008 | Zbl 1161.00304
[19] Saltelli A., Tarantola S., Campolongo F., Ratto M., Sensitivity Analysis in Practice, John Wiley & Sons, Chichester, 2004 | Zbl 1049.62112
[20] Sobol’ I.M., Sensitivity estimates for nonlinear mathematical models, Math. Modeling Comput. Experiment, 1993, 1(4), 407–414 | Zbl 1039.65505
[21] Sobol’ I.M., Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Math. Comput. Simulation, 2001, 55(1–3), 271–280 http://dx.doi.org/10.1016/S0378-4754(00)00270-6 | Zbl 1005.65004
[22] Sobol’ I.M., Myshetskaya E.E., Monte Carlo estimators for small sensitivity indices, Monte Carlo Methods Appl., 2007, 13(5–6), 455–465
[23] Sobol’ I.M., Tarantola S., Gatelli D., Kucherenko S.S., Mauntz W., Estimating the approximation error when fixing unessential factors in global sensitivity analysis, Reliability Engineering & System Safety, 2007, 92(7), 957–960 http://dx.doi.org/10.1016/j.ress.2006.07.001
[24] Sudret B., Global sensitivity analysis using polynomial chaos expansions, Reliability Engineering & System Safety, 2008, 93(7), 964–979 http://dx.doi.org/10.1016/j.ress.2007.04.002
[25] Wagner H.M., Global sensitivity analysis, Oper. Res., 1995, 43(6), 948–969 http://dx.doi.org/10.1287/opre.43.6.948 | Zbl 0852.90122
[26] Zlatev Z., Computer Treatment of Large Air Pollution Models, Environmental Science and Technology Library, 2, Springer, Berlin, 1995
[27] Zlatev Z., Dimov I., Computational and Numerical Challenges in Environmental Modelling, Stud. Comput. Math., 13, Elsevier, Amsterdam, 2006 | Zbl 1120.65103
[28] Zlatev Z., Dimov I., Georgiev K., Three-dimensional version of the Danish-Eulerian model, Z. Angew. Math. Mech., 1996, 76(S4), 473–476 | Zbl 0925.65236
[29] http://www.wolfram.com/mathematica/