We formulate and study numerically a new, parameter-free stabilized finite element method for advection-diffusion problems. Using properties of compatible finite element spaces we establish connection between nodal diffusive fluxes and one-dimensional diffusion equations on the edges of the mesh. To define the stabilized method we extend this relationship to the advection-diffusion case by solving simplified one-dimensional versions of the governing equations on the edges. Then we use H(curl)-conforming edge elements to expand the resulting edge fluxes into an exponentially fitted flux field inside each element. Substitution of the nodal flux by this new flux completes the formulation of the method. Utilization of edge elements to define the numerical flux and the lack of stabilization parameters differentiate our approach from other stabilized methods. Numerical studies with representative advection-diffusion test problems confirm the excellent stability and robustness of the new method. In particular, the results show minimal overshoots and undershoots for both internal and boundary layers on uniform and non-uniform grids.
@article{bwmeta1.element.doi-10_2478_s11533-013-0250-8, author = {Pavel Bochev and Kara Peterson}, title = {A parameter-free stabilized finite element method for scalar advection-diffusion problems}, journal = {Open Mathematics}, volume = {11}, year = {2013}, pages = {1458-1477}, zbl = {1273.65173}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0250-8} }
Pavel Bochev; Kara Peterson. A parameter-free stabilized finite element method for scalar advection-diffusion problems. Open Mathematics, Tome 11 (2013) pp. 1458-1477. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0250-8/
[1] Angermann L., Wang S., Three-dimensional exponentially fitted conforming tetrahedral finite elements for the semiconductor continuity equations, Appl. Numer. Math., 2003, 46(1), 19–43 http://dx.doi.org/10.1016/S0168-9274(02)00224-6 | Zbl 1028.82024
[2] Arnold D.N., Falk R.S., Winther R., Finite element exterior calculus, homological techniques, and applications, Acta Numer., 2006, 15, 1–155 http://dx.doi.org/10.1017/S0962492906210018 | Zbl 1185.65204
[3] Badia S., Codina R., Analysis of a stabilized finite element approximation of the transient convection-diffusion equation using an ALE framework, SIAM J. Numer. Anal., 2006, 44(5), 2159–2197 http://dx.doi.org/10.1137/050643532 | Zbl 1126.65079
[4] Bochev P.B., Hyman J.M., Principles of mimetic discretizations of differential operators, In: Compatible Spatial Discretizations, Minneapolis, May 11–15, 2004, IMA Vol. Math. Appl., 142, Springer, New York, 2006, 89–119 | Zbl 1110.65103
[5] Brezzi F., Bristeau M.O., Franca L.P., Mallet M., Rogé G., A relationship between stabilized finite element methods and the Galerkin method with bubble functions, Comput. Methods Appl. Mech. Engrg., 1992, 96(1), 117–129 http://dx.doi.org/10.1016/0045-7825(92)90102-P | Zbl 0756.76044
[6] Brooks A.N., Hughes T.J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, In: FENOMECH’ 81, I, Stuttgart, August 25–28, 1981, Comput. Methods Appl. Mech. Engrg., 1982, 32(1–3), 199–259
[7] Codina R., Comparison of some finite element methods for solving the diffusion-convection-reaction equation, Comput. Methods Appl. Mech. Engrg., 1998, 156(1–4), 185–210 http://dx.doi.org/10.1016/S0045-7825(97)00206-5 | Zbl 0959.76040
[8] Elman H.C., Silvester D.J., Wathen A.J., Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics, Numer. Math. Sci. Comput., Oxford University Press, New York, 2005 | Zbl 1083.76001
[9] Franca L.P., Farhat C., Bubble functions prompt unusual stabilized finite element methods, Comput. Methods Appl. Mech. Engrg., 1995, 123(1–4), 299–308 http://dx.doi.org/10.1016/0045-7825(94)00721-X | Zbl 1067.76567
[10] Franca L.P., Frey S.L., Hughes T.J.R., Stabilized finite element methods: I. Application to the advective-diffusive model, Comput. Methods Appl. Mech. Engrg., 1992, 95(2), 253–276 http://dx.doi.org/10.1016/0045-7825(92)90143-8 | Zbl 0759.76040
[11] Franca L.P., Russo A., Recovering SUPG using Petrov-Galerkin formulations enriched with adjoint residual free bubbles, In: IV WCCM, Buenos Aires, June 29–July 2, 1998, Comput. Methods Appl. Mech. Engrg., 2000, 182(3–4), 333–339 | Zbl 0977.76044
[12] Harari I., Hughes T.J.R., What are C and h?: Inequalities for the analysis and design of finite element methods, Comput. Methods Appl. Mech. Engrg., 1992, 97(2), 157–192 http://dx.doi.org/10.1016/0045-7825(92)90162-D | Zbl 0764.73083
[13] Hughes T.J.R., Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput. Methods Appl. Mech. Engrg., 1995, 127(1–4), 387–401 http://dx.doi.org/10.1016/0045-7825(95)00844-9 | Zbl 0866.76044
[14] Hughes T.J.R., Brooks A., A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: application to the streamline-upwind procedure, In: Finite Elements in Fluids, 4, Banff, June 10–13, 1980, Wiley-Intersci. Publ., John Wiley & Sons, New York, 1982, 47–65
[15] Hughes T.J.R., Mallet M., Mizukami A., A new finite element formulation for computational fluid dynamics: II. Beyond SUPG, Comput. Methods Appl. Mech. Engrg., 1986, 54(3), 341–355 http://dx.doi.org/10.1016/0045-7825(86)90110-6 | Zbl 0622.76074
[16] John V., Schmeyer E., Finite element methods for time-dependent convection-diffusion-reaction equations with small diffusion, Comput. Methods Appl. Mech. Engrg., 2008, 198(3–4), 475–494 http://dx.doi.org/10.1016/j.cma.2008.08.016 | Zbl 1228.76088
[17] Johnson C., Numerical Solution of Partial Differential Equations by the Finite Element Method, Cambridge University Press, Cambridge, 1987 | Zbl 0628.65098
[18] Knobloch P., On the definition of the SUPG parameter, Electron. Trans. Numer. Anal., 2008, 32, 76–89 | Zbl 1171.65079
[19] Martinez M.J., Comparison of Galerkin and control volume finite element for advection-diffusion problems, Internat. J. Numer. Methods Fluids, 2006, 50(3), 347–376 http://dx.doi.org/10.1002/fld.1060 | Zbl 1086.65095
[20] Nédélec J.-C., Mixed finite elements in ℝ3, Numer. Math., 1980, 35(3), 315–341 http://dx.doi.org/10.1007/BF01396415
[21] Sacco R., Exponentially fitted shape functions for advection-dominated flow problems in two dimensions, J. Comput. Appl. Math., 1996, 67(1), 161–165 http://dx.doi.org/10.1016/0377-0427(95)00149-2 | Zbl 0854.76054
[22] Scharfetter D.L., Gummel H.K., Large-signal analysis of a silicon Read diode oscillator, IEEE Transactions on Electron Devices, 1969, 16(1), 64–77 http://dx.doi.org/10.1109/T-ED.1969.16566
[23] Turner D.Z., Nakshatrala K.B., Hjelmstad K.D., A stabilized formulation for the advection-diffusion equation using the generalized finite element method, Internat. J. Numer. Methods Fluids, 2011, 66(1), 64–81 http://dx.doi.org/10.1002/fld.2248 | Zbl 05881770
[24] Wang S., A novel exponentially fitted triangular finite element method for an advection-diffusion problem with boundary layers, J. Comput. Phys., 1997, 134(2), 253–260 http://dx.doi.org/10.1006/jcph.1997.5691
[25] Wang S., A new exponentially fitted triangular finite element method for the continuity equations in the drift-diffusion model of semiconductor devices, M2AN Math. Model. Numer. Anal., 1999, 33(1), 99–112 http://dx.doi.org/10.1051/m2an:1999107 | Zbl 0961.82030