We propose an adaptive finite element method for the solution of a linear Fredholm integral equation of the first kind. We derive a posteriori error estimates in the functional to be minimized and in the regularized solution to this functional, and formulate corresponding adaptive algorithms. To do this we specify nonlinear results obtained earlier for the case of a linear bounded operator. Numerical experiments justify the efficiency of our a posteriori estimates applied both to the computationally simulated and experimental backscattered data measured in microtomography.
@article{bwmeta1.element.doi-10_2478_s11533-013-0247-3, author = {Nikolay Koshev and Larisa Beilina}, title = {An adaptive finite element method for Fredholm integral equations of the first kind and its verification on experimental data}, journal = {Open Mathematics}, volume = {11}, year = {2013}, pages = {1489-1509}, zbl = {1312.65225}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0247-3} }
Nikolay Koshev; Larisa Beilina. An adaptive finite element method for Fredholm integral equations of the first kind and its verification on experimental data. Open Mathematics, Tome 11 (2013) pp. 1489-1509. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0247-3/
[1] Asadzadeh M., Eriksson K., On adaptive finite element methods for Fredholm integral equations of the second kind, SIAM J. Numer. Anal., 1994, 31(3), 831–855 http://dx.doi.org/10.1137/0731045 | Zbl 0814.65134
[2] Atkinson K.E., The numerical solution of integral equations of the second kind, Cambridge Monogr. Appl. Comput. Math., 4, Cambridge University Press, Cambridge, 1997
[3] Bakushinsky A.B., A posteriori error estimates for approximate solutions of irregular operator equations, Dokl. Math., 2011, 83(2), 192–193 http://dx.doi.org/10.1134/S1064562411020190 | Zbl 1252.65096
[4] Bakushinsky A.B., Kokurin M.Yu., Smirnova A., Iterative Methods for Ill-Posed Problems, Inverse Ill-Posed Probl. Ser., 54, Walter de Gruyter, Berlin, 2011 | Zbl 1215.47013
[5] Basistov Yu.A., Goncharsky A.V., Lekht E.E., Cherepashchuk A.M., Yagola A.G., Application of the regularization method for increasing of the radiotelescope resolution power, Astronomicheskii Zhurnal, 1979, 56(2), 443–449 (in Russian)
[6] Beilina L., Klibanov M.V., A posteriori error estimates for the adaptivity technique for the Tikhonov functional and global convergence for a coefficient inverse problem, Inverse Problems, 2010, 26(4), #045012 http://dx.doi.org/10.1088/0266-5611/26/4/045012 | Zbl 1193.65165
[7] Beilina L., Klibanov M.V., Reconstruction of dielectrics from experimental data via a hybrid globally convergent/adaptive inverse algorithm, Inverse Problems, 2010, 26(12), #125009 http://dx.doi.org/10.1088/0266-5611/26/12/125009 | Zbl 1209.78010
[8] Beilina L., Klibanov M.V., Kokurin M.Yu., Adaptivity with relaxation for ill-posed problems and global convergence for a coefficient inverse problem, J. Math. Sci. (N.Y.), 2010, 167(3), 279–325 http://dx.doi.org/10.1007/s10958-010-9921-1 | Zbl 1286.65147
[9] Beilina L., Klibanov M.V., Kuzhuget A., New a posteriori error estimates for adaptivity technique and global convergence for the hyperbolic coefficient inverse problem, J. Math. Sci. (N.Y.), 2011, 172(4), 449–476 http://dx.doi.org/10.1007/s10958-011-0203-3 | Zbl 1219.35350
[10] Bolotina A.V., Luk’yanov F.A., Rau E.I., Sennov R.A., Yagola A.G., Energy spectra of electrons backscattered from bulk solid targets, Moscow University Physics Bulletin, 2009, 64(5), 503–506 http://dx.doi.org/10.3103/S0027134909050075
[11] Eriksson K., Estep D., Johnson C., Applied Mathematics: Body and Soul, 3, Springer, Berlin, 2004 http://dx.doi.org/10.1007/978-3-662-05796-4 | Zbl 1055.00005
[12] Goncharsky A.V., Cherepashchuk A.M., Yagola A.G., Ill-Posed Problems of Astrophysics, Moscow, Nauka, 1985 (in Russian)
[13] Groetsch C.W., Inverse Problems in the Mathematical Sciences, Vieweg Math. Sci. Engrs., Friedr. Vieweg & Sohn, Braunschweig, 1993 | Zbl 0779.45001
[14] Johnson C., Numerical Solution of Partial Differential Equations by the Finite Element Method, Dover, Mineola, 2009 | Zbl 1191.65140
[15] Johnson C., Szepessy A., Adaptive finite element methods for conservation laws based on a posteriori error estimates, Comm. Pure Appl. Math., 1995, 48(3), 199–234 http://dx.doi.org/10.1002/cpa.3160480302 | Zbl 0826.65088
[16] Klibanov M.V., Bakushinsky A.B., Beilina L., Why a minimizer of the Tikhonov functional is closer to the exact solution than the first guess, J. Inverse Ill-Posed Probl., 2011, 19(1), 83–105 http://dx.doi.org/10.1515/jiip.2011.024 | Zbl 1279.35113
[17] Koshev N.A., Luk’yanov F.A., Rau E.I., Sennov R.A., Yagola A.G., Increasing spatial resolution in the backscattered electron mode of scanning electron microscopy, Bulletin of the Russian Academy of Sciences: Physics, 2011, 75(9), 1181–1184 http://dx.doi.org/10.3103/S1062873811090139
[18] Koshev N.A., Orlikovsky N.A., Rau E.I., Yagola A.G., Solution of the inverse problem of restoring the signals from an electronic microscope in the backscattered electron mode on the class of bounded variation functions, Numerical Methods and Programming, 2011, 12, 362–367 (in Russian)
[19] Kress R., Linear Integral Equations, Appl. Math. Sci., 82, Springer, Berlin, 1989
[20] Tikhonov A.N., Goncharsky A.V., Stepanov V.V., Kochikov I.V., Ill-posed problems of image processing, Soviet Phys. Dokl., 1987, 32(6), 456–458
[21] Tikhonov A.N., Goncharsky A.V., Stepanov V.V., Yagola A.G., Numerical Methods for the Solution of Ill-Posed Problems, Math. Appl., 328, Kluwer, Dordrecht, 1995 | Zbl 0831.65059
[22] Tikhonov A.N., Leonov A.S., Yagola A.G., Nonlinear Ill-Posed Problems, Appl. Math. Math. Comput., 14, Chapman & Hall, London, 1998 | Zbl 0920.65038
[23] Yagola A.G., Koshev N.A., Restoration of smeared and defocused color images, Numerical Methods and Programming, 2008, 9, 207–212 (in Russian)