A Perron-type theorem for nonautonomous delay equations
Luis Barreira ; Claudia Valls
Open Mathematics, Tome 11 (2013), p. 1283-1295 / Harvested from The Polish Digital Mathematics Library

We show that if the Lyapunov exponents of a linear delay equation x′ = L(t)x t are limits, then the same happens with the exponential growth rates of the solutions to the equation x′ = L(t)x t + f(t, x t) for any sufficiently small perturbation f.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269600
@article{bwmeta1.element.doi-10_2478_s11533-013-0244-6,
     author = {Luis Barreira and Claudia Valls},
     title = {A Perron-type theorem for nonautonomous delay equations},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {1283-1295},
     zbl = {1271.34072},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0244-6}
}
Luis Barreira; Claudia Valls. A Perron-type theorem for nonautonomous delay equations. Open Mathematics, Tome 11 (2013) pp. 1283-1295. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0244-6/

[1] Barreira L., Pesin Ya., Nonuniform Hyperbolicity, Encyclopedia Math. Appl., 115, Cambridge University Press, Cambridge, 2007

[2] Barreira L., Valls C., Stability of Nonautonomous Differential Equations, Lecture Notes in Math., 1926, Springer, Berlin, 2008 | Zbl 1152.34003

[3] Coffman C.V., Asymptotic behavior of solutions of ordinary difference equations, Trans. Amer. Math. Soc., 1964, 110, 22–51 http://dx.doi.org/10.1090/S0002-9947-1964-0156122-9[Crossref] | Zbl 0122.09703

[4] Coppel W.A., Stability and Asymptotic Behavior of Differential Equations, D.C. Heath, Boston, 1965

[5] Hale J.K., Verduyn Lunel S.M., Introduction to Functional-Differential Equations, Appl. Math. Sci., 99, Springer, New York, 1993 | Zbl 0787.34002

[6] Hartman P., Wintner A., Asymptotic integrations of linear differential equations, Amer. J. Math., 1955, 77, 45–86 http://dx.doi.org/10.2307/2372422[Crossref] | Zbl 0064.08703

[7] Lettenmeyer F., Über das asymptotische Verhalten der Lösungen von Differentialgleichungen und Differentialgleichungssystemen, Sitzungsberichte der Königl. Bayerischen Akademie der Wissenschaften, München, 1929, 201–252 | Zbl 55.0845.02

[8] Matsui K., Matsunaga H., Murakami S., Perron type theorem for functional differential equations with infinite delay in a Banach space, Nonlinear Anal., 2008, 69(11), 3821–3837 http://dx.doi.org/10.1016/j.na.2007.10.017[Crossref] | Zbl 1169.34053

[9] Perron O., Über Stabilität und asymptotisches Verhalten der Integrale von Differentialgleichungssystemen, Math. Z., 1929, 29(1), 129–160 http://dx.doi.org/10.1007/BF01180524[Crossref] | Zbl 54.0456.04

[10] Pituk M., A Perron type theorem for functional differential equations, J. Math. Anal. Appl., 2006, 316(1), 24–41 http://dx.doi.org/10.1016/j.jmaa.2005.04.027[Crossref]

[11] Pituk M., Asymptotic behavior and oscillation of functional differential equations, J. Math. Anal. Appl., 2006, 322(2), 1140–1158 http://dx.doi.org/10.1016/j.jmaa.2005.09.081[Crossref]