On the dimension of the attractor for a perturbed 3d Ladyzhenskaya model
Dalibor Pražák ; Josef Žabenský
Open Mathematics, Tome 11 (2013), p. 1264-1282 / Harvested from The Polish Digital Mathematics Library

We consider the so-called Ladyzhenskaya model of incompressible fluid, with an additional artificial smoothing term ɛΔ3. We establish the global existence, uniqueness, and regularity of solutions. Finally, we show that there exists an exponential attractor, whose dimension we estimate in terms of the relevant physical quantities, independently of ɛ > 0.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269498
@article{bwmeta1.element.doi-10_2478_s11533-013-0242-8,
     author = {Dalibor Pra\v z\'ak and Josef \v Zabensk\'y},
     title = {On the dimension of the attractor for a perturbed 3d Ladyzhenskaya model},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {1264-1282},
     zbl = {06176170},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0242-8}
}
Dalibor Pražák; Josef Žabenský. On the dimension of the attractor for a perturbed 3d Ladyzhenskaya model. Open Mathematics, Tome 11 (2013) pp. 1264-1282. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0242-8/

[1] Ball J.M., Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations, J. Nonlinear Sci., 1997, 7(5), 475–502 http://dx.doi.org/10.1007/s003329900037[Crossref] | Zbl 0903.58020

[2] Bulíček M., Ettwein F., Kaplický P., Pražák D., The dimension of the attractor for the 3D flow of a non-Newtonian fluid, Commun. Pure Appl. Anal., 2009, 8(5), 1503–1520 http://dx.doi.org/10.3934/cpaa.2009.8.1503[WoS][Crossref] | Zbl 1200.37074

[3] Bulíček M., Ettwein F., Kaplický P., Pražák D., On uniqueness and time regularity of flows of power-law like non-Newtonian fluids, Math. Methods Appl. Sci., 2010, 33(16), 1995–2010 | Zbl 1202.35152

[4] Constantin P., Foias C., Navier-Stokes Equations, Chicago Lectures in Math., The University of Chicago Press, Chicago, 1988 | Zbl 0687.35071

[5] Feireisl E., Pražák D., Asymptotic Behavior of Dynamical Systems in Fluid Mechanics, AIMS Ser. Appl. Math., 4, American Institute of Mathematical Sciences, Springfield, 2010 | Zbl 1198.37002

[6] Ladyzhenskaya O.A., New equations for the description of the motions of viscous incompressible fluids, and global solvability for their boundary value problems, Proc. Steklov Inst. Math., 1967, 102, 95–118

[7] Lions J.-L., Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Gauthier-Villars, Paris, 1969

[8] Málek J., Nečas J., Rokyta M., Růžička M., Weak and Measure-Valued Solutions to Evolutionary PDEs, Appl. Math. Math. Comput., 13, Chapman & Hall, London, 1996 | Zbl 0851.35002

[9] de Rham G., Variétés Différentiables, 3rd ed., Publications de l’Institut de mathématique de l’Université de Nancago, 3, Hermann, Paris, 1973

[10] Temam R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed., Appl. Math. Sci., 68, Springer, New York, 1997 [Crossref] | Zbl 0871.35001

[11] Temam R., Navier-Stokes Equations, American Mathematical Society Chelsea, Providence, 2001