Assume that L p,q, are Lorentz spaces. This article studies the question: what is the size of the set . We prove the following dichotomy: either or E is σ-porous in , provided 1/p ≠ 1/p 1 + … + 1/p n. In general case we obtain that either or E is meager. This is a generalization of the results for classical L p spaces.
@article{bwmeta1.element.doi-10_2478_s11533-013-0241-9, author = {Szymon G\l \k ab and Filip Strobin and Chan Yang}, title = {Dichotomies for Lorentz spaces}, journal = {Open Mathematics}, volume = {11}, year = {2013}, pages = {1228-1242}, zbl = {1273.46017}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0241-9} }
Szymon Głąb; Filip Strobin; Chan Yang. Dichotomies for Lorentz spaces. Open Mathematics, Tome 11 (2013) pp. 1228-1242. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0241-9/
[1] Balcerzak M., Wachowicz A., Some examples of meager sets in Banach spaces, Real Anal. Exchange, 2000/01, 26(2), 877–884 | Zbl 1046.46013
[2] Grafakos L., Classical Fourier Analysis, 2nd ed., Grad. Texts in Math., 249, Springer, New York, 2008 | Zbl 1220.42001
[3] GŁab S., Strobin F., Dichotomies for L p spaces, J. Math. Anal. Appl., 2010, 368(1), 382–390 http://dx.doi.org/10.1016/j.jmaa.2010.02.011[Crossref] | Zbl 1200.46028
[4] Jachymski J., A nonlinear Banach-Steinhaus theorem and some meager sets in Banach spaces, Studia Math., 2005, 170(3), 303–320 http://dx.doi.org/10.4064/sm170-3-7[Crossref] | Zbl 1090.46015
[5] Zajíček L., Porosity and σ-porosity, Real Anal. Exchange, 1987/1988, 13(2), 314–350
[6] Zajíček L., On σ-porous sets in abstract spaces, Abstr. Appl. Anal., 2005, 5, 509–534 http://dx.doi.org/10.1155/AAA.2005.509[Crossref]