On locally graded barely transitive groups
Cansu Betin ; Mahmut Kuzucuoğlu
Open Mathematics, Tome 11 (2013), p. 1188-1196 / Harvested from The Polish Digital Mathematics Library

We show that a barely transitive group is totally imprimitive if and only if it is locally graded. Moreover, we obtain the description of a barely transitive group G for the case G has a cyclic subgroup 〈x〉 which intersects non-trivially with all subgroups and for the case a point stabilizer H of G has a subgroup H 1 of finite index in H satisfying the identity χ(H 1) = 1, where χ is a multi-linear commutator of weight w.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269238
@article{bwmeta1.element.doi-10_2478_s11533-013-0240-x,
     author = {Cansu Betin and Mahmut Kuzucuo\u glu},
     title = {On locally graded barely transitive groups},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {1188-1196},
     zbl = {1279.20001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0240-x}
}
Cansu Betin; Mahmut Kuzucuoğlu. On locally graded barely transitive groups. Open Mathematics, Tome 11 (2013) pp. 1188-1196. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0240-x/

[1] Arikan A., On locally graded non-periodic barely transitive groups, Rend. Semin. Mat. Univ. Padova, 2007, 117, 141–146 | Zbl 1166.20001

[2] Arikan A., Trabelsi N., On certain characterizations of barely transitive groups, Rend. Semin. Mat. Univ. Padova, 2010, 123, 203–210 [WoS] | Zbl 1202.20002

[3] Belyaev V.V., Groups of Miller-Moreno type, Siberian Math. J., 1978, 19(3), 356–360 http://dx.doi.org/10.1007/BF01875284[Crossref] | Zbl 0409.20027

[4] Belyaev V.V., Inert subgroups in infinite simple groups, Siberian Math. J., 1993, 34(4), 606–611 http://dx.doi.org/10.1007/BF00975160[Crossref] | Zbl 0831.20033

[5] Belyaev V.V., Kuzucuoglu M., Locally finite barely transitive groups, Algebra Logic, 2003, 42(3), 147–152 http://dx.doi.org/10.1023/A:1023946008218[Crossref] | Zbl 1033.20001

[6] Betin C., Kuzucuoğlu M., Description of barely transitive groups with soluble point stabilizer, Comm. Algebra, 2009, 37(6), 1901–1907 http://dx.doi.org/10.1080/00927870802210076[WoS][Crossref] | Zbl 1181.20002

[7] Bruno B., Phillips R.E., On minimal conditions related to Miller-Moreno type groups, Rend. Sem. Mat. Univ. Padova, 1983, 69, 153–168 | Zbl 0522.20022

[8] Bhattacharjee M., Macpherson D., Möller R.G., Neumann P.M., Notes on Infinite Permutation Groups, Texts Read. Math., 12, Lecture Notes in Math., 1698, Hindustan Book Agency/Springer, New Delhi/Berlin, 1997 | Zbl 0916.20001

[9] Dixon J.D., Mortimer B., Permutation Groups, Grad. Texts in Math., 163, Springer, New York, 1996 http://dx.doi.org/10.1007/978-1-4612-0731-3[Crossref]

[10] Dixon M.R., Evans M.J., Obraztsov V.N., Wiegold J., Groups that are covered by non-abelian simple groups, J. Algebra, 2000, 223(2), 511–526 http://dx.doi.org/10.1006/jabr.1999.8051[Crossref]

[11] Hartley B., Kuzucuoğlu M., Non-simplicity of locally finite barely transitive groups, Proc. Edinburgh Math. Soc., 1997, 40(3), 483–490 http://dx.doi.org/10.1017/S0013091500023968[Crossref] | Zbl 0904.20031

[12] Hughes D.R., Thompson J.G., The H-problem and the structure of H-groups, Pacific J. Math., 1959, 9, 1097–1101 http://dx.doi.org/10.2140/pjm.1959.9.1097[Crossref] | Zbl 0098.25201

[13] Kegel O.H., Wehrfritz B.A.F., Locally Finite Groups, North-Holland Math. Library, 3, North-Holland/Elsevier, Amsterdam-London/New York, 1973

[14] Khukhro E.I., Nilpotent Groups and Their Automorphisms, de Gruyter Exp. Math., 8, Walter de Gruyter, Berlin, 1993 http://dx.doi.org/10.1515/9783110846218[Crossref]

[15] Khukhro E.I., Makarenko N.Yu., Large characteristic subgroups satisfying multilinear commutator identities, J. Lond. Math. Soc., 2007, 75(3), 635–646 http://dx.doi.org/10.1112/jlms/jdm047[Crossref] | Zbl 1132.20013

[16] Kuzucuoğlu M., Barely transitive permutation groups, Arch. Math. (Basel), 1990, 55(6), 521–532 http://dx.doi.org/10.1007/BF01191686[Crossref] | Zbl 0694.20004

[17] Kuzucuoğlu M., On torsion-free barely transitive groups, Turkish J. Math., 2000, 24(3), 273–276 | Zbl 0984.20001

[18] Neumann P.M., The lawlessness of groups of finitary permutations, Arch. Math. (Basel), 1975, 26(6), 561–566 http://dx.doi.org/10.1007/BF01229781[Crossref] | Zbl 0338.20037

[19] Obraztsov V.N., Simple torsion-free groups in which the intersection of any two non-trivial subgroups is non-trivial, J. Algebra, 1998, 199(1), 337–343 http://dx.doi.org/10.1006/jabr.1997.7185[Crossref]

[20] Ol’shanskii A.Yu., Infinite groups with cyclic subgroups, Soviet Math. Dokl., 1979, 20(2), 343–346

[21] Ol’shanskii A.Yu., Groups of bounded period with subgroups of prime order, Algebra and Logic, 1982, 21(5), 369–418 http://dx.doi.org/10.1007/BF02027230[Crossref]

[22] Ol’shanskii A.Yu., Geometry of Defining Relations in Groups, Math. Appl. (Soviet Ser.), 70, Kluwer, Dordrecht, 1991 http://dx.doi.org/10.1007/978-94-011-3618-1[Crossref]

[23] Robinson D.J.S., A Course in the Theory of Groups, 2nd ed., Grad. Texts in Math., 80, Springer, New York, 1996 http://dx.doi.org/10.1007/978-1-4419-8594-1

[24] Sozutov A.I., Residually finite groups with nontrivial intersections of pairs of subgroups, Siberian Math. J., 2000, 41(2), 362–365 http://dx.doi.org/10.1007/BF02674606[Crossref] | Zbl 0956.20018

[25] Tomkinson M.J., FC-Groups, Res. Notes in Math., 96, Pitman, Boston, 1984