On Hall subgroups of a finite group
Wenbin Guo ; Alexander Skiba
Open Mathematics, Tome 11 (2013), p. 1177-1187 / Harvested from The Polish Digital Mathematics Library

New criteria of existence and conjugacy of Hall subgroups of finite groups are given.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269702
@article{bwmeta1.element.doi-10_2478_s11533-013-0239-3,
     author = {Wenbin Guo and Alexander Skiba},
     title = {On Hall subgroups of a finite group},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {1177-1187},
     zbl = {1270.20018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0239-3}
}
Wenbin Guo; Alexander Skiba. On Hall subgroups of a finite group. Open Mathematics, Tome 11 (2013) pp. 1177-1187. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0239-3/

[1] Ballester-Bolinches A., Esteban-Romero R., Asaad M., Products of Finite Groups, de Gruyter Exp. Math., 53, Walter de Gruyter, Berlin, 2010 http://dx.doi.org/10.1515/9783110220612[Crossref] | Zbl 1206.20019

[2] Čunihin S.A., On π-separate groups, Doklady Akad. Nauk SSSR (N.S.), 1948, 59, 443–445 (in Russian)

[3] Čunihin S.A., On weakening the conditions in theorems of Sylow type, Doklady Akad. Nauk SSSR (N.S.), 1952, 83, 663–665 (in Russian) [WoS]

[4] Čunihin S.A., On existence and conjugateness of subgroups of a finite group, Mat. Sb. (N.S.), 1953, 33(75), 111–132 (in Russian)

[5] Doerk K., Hawkes T., Finite Soluble Groups, de Gruyter Exp. Math., 4, Walter de Gruyter, Berlin, 1992 http://dx.doi.org/10.1515/9783110870138 | Zbl 0753.20001

[6] Foguel N., On seminormal subgroups, J. Algebra, 1994, 165(3), 633–635 http://dx.doi.org/10.1006/jabr.1994.1135[Crossref]

[7] Guo W., Shum K.P., Skiba A.N., X-semipermutable subgroups of finite groups, J. Algebra, 2007, 315(1), 31–41 http://dx.doi.org/10.1016/j.jalgebra.2007.06.002[Crossref] | Zbl 1130.20017

[8] Guo W.B., Skiba A.N., Criteria of existence of Hall subgroups in non-soluble finite groups, Acta Math. Sin. (Engl. Ser.), 2010, 26(2), 295–304 http://dx.doi.org/10.1007/s10114-010-8034-6[Crossref][WoS] | Zbl 1213.20018

[9] Guo W., Skiba A.N., New criterions of existence and conjugacy of Hall subgroups of finite groups, Proc. Amer. Math. Soc., 2011, 139(7), 2327–2336 http://dx.doi.org/10.1090/S0002-9939-2010-10675-5[Crossref] | Zbl 1236.20019

[10] Hall P., A characteristic property of soluble groups, J. London Math. Soc., 1937, s1–12(3), 198–200 http://dx.doi.org/10.1112/jlms/s1-12.2.198[Crossref]

[11] Hall P., Theorems like Sylow’s, Proc. London Math. Soc., 1956, 6, 286–304 http://dx.doi.org/10.1112/plms/s3-6.2.286[Crossref] | Zbl 0075.23907

[12] Kegel O.H., Produkte nilpotenter Gruppen, Arch. Math. (Basel), 1961, 12, 90–93 http://dx.doi.org/10.1007/BF01650529[Crossref] | Zbl 0099.01401

[13] Kegel O.H, Sylow-Gruppen and Subnormalteiler endlicher Gruppen, Math. Z., 1962, 78, 205–221 http://dx.doi.org/10.1007/BF01195169[Crossref]

[14] Knyagina V.N., Monakhov V.S., On the π′-properties of a finite group possessing a Hall π-subgroup, Sib. Math. J., 2011, 52(2), 234–243 http://dx.doi.org/10.1134/S0037446611020066[Crossref] | Zbl 1256.20013

[15] Revin D.O., Vdovin E.P., Hall subgroups of finite groups, In: Ischia Group Theory 2004, Naples, March 31–April 3, 2004 Contemp. Math., 402, American Mathematical Society/Bar-Ilan University, Providence/Ramat Gan, 2006, 229–265

[16] Rusakov S.A., Analogues of Sylow’s theorem on the existence and imbedding of subgroups, Sibirsk. Mat. Zh., 1963, 4(2), 325–342 (in Russian) | Zbl 0209.33106

[17] Shemetkov L.A., On Sylow properties of finite groups, Dokl. Akad. Nauk BSSR, 1972, 16(10), 881–883 (in Russian)

[18] Shemetkov L.A., Formations of Finite Groups, Nauka, Moscow, 1978 (in Russian) | Zbl 0496.20014

[19] Vdovin E.P., Revin D.O., A conjugacy criterion for Hall subgroups in finite groups, Sib. Math. J., 2010, 51(3), 402–409 http://dx.doi.org/10.1007/s11202-010-0041-4[Crossref] | Zbl 1205.20021

[20] Wielandt H., Zum Satz von Sylow. II, Math. Z., 1959, 71, 461–462 http://dx.doi.org/10.1007/BF01181418[Crossref] | Zbl 0166.28802

[21] Wielandt H., Subnormal Subgroups and Permutation Groups, Ohio State University, Columbus, 1971