On the calculation of the Dunkl-Williams constant of normed linear spaces
Hiroyasu Mizuguchi ; Kichi-Suke Saito ; Ryotaro Tanaka
Open Mathematics, Tome 11 (2013), p. 1212-1227 / Harvested from The Polish Digital Mathematics Library

Recently, Jiménez-Melado et al. [Jiménez-Melado A., Llorens-Fuster E., Mazcuñán-Navarro E.M., The Dunkl-Williams constant, convexity, smoothness and normal structure, J. Math. Anal. Appl., 2008, 342(1), 298–310] defined the Dunkl-Williams constant DW(X) of a normed linear space X. In this paper we present some characterizations of this constant. As an application, we calculate DW(ℓ2-ℓ∞) in the Day-James space ℓ2-ℓ∞.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269422
@article{bwmeta1.element.doi-10_2478_s11533-013-0238-4,
     author = {Hiroyasu Mizuguchi and Kichi-Suke Saito and Ryotaro Tanaka},
     title = {On the calculation of the Dunkl-Williams constant of normed linear spaces},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {1212-1227},
     zbl = {1283.46013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0238-4}
}
Hiroyasu Mizuguchi; Kichi-Suke Saito; Ryotaro Tanaka. On the calculation of the Dunkl-Williams constant of normed linear spaces. Open Mathematics, Tome 11 (2013) pp. 1212-1227. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0238-4/

[1] Alonso J., Some properties of Birkhoff and isosceles orthogonality in normed linear spaces, In: Inner Product Spaces and Applications, Pitman Res. Notes Math. Ser., 376, Longman, Harlow, 1997, 1–11 | Zbl 0898.46019

[2] Alonso J., Martini H., Mustafaev Z., On orthogonal chords in normed planes, Rocky Mountain J. Math., 2011, 41(1), 23–35 http://dx.doi.org/10.1216/RMJ-2011-41-1-23[Crossref] | Zbl 1214.52001

[3] Al-Rashed A.M., Norm inequalities and characterizations of inner product spaces, J. Math. Anal. Appl., 1993, 176(2), 587–593 http://dx.doi.org/10.1006/jmaa.1993.1233[Crossref]

[4] Birkhoff G., Orthogonality in linear metric spaces, Duke Math. J., 1935, 1(2), 169–172 http://dx.doi.org/10.1215/S0012-7094-35-00115-6[Crossref] | Zbl 0012.30604

[5] Dadipour F., Fujii M., Moslehian M.S., Dunkl-Williams inequality for operators associated with p-angular distance, Nihonkai Math. J., 2010, 21(1), 11–20 | Zbl 1225.47020

[6] Dadipour F., Moslehian M.S., An approach to operator Dunkl-Williams inequalities, Publ. Math. Debrecen, 2011, 79(1-2), 109–118 http://dx.doi.org/10.5486/PMD.2011.4936[Crossref][WoS] | Zbl 1262.47026

[7] Day M.M., Some characterizations of inner-product spaces, Trans. Amer. Math. Soc., 1947, 62, 320–337 http://dx.doi.org/10.1090/S0002-9947-1947-0022312-9[Crossref] | Zbl 0034.21703

[8] Dunkl C.F., Williams K.S., A simple norm inequality, Amer. Math. Monthly, 1964, 71(1), 53–54 http://dx.doi.org/10.2307/2311304[Crossref] | Zbl 0178.16202

[9] James R.C., Orthogonality in normed linear spaces, Duke Math. J., 1945, 12(2), 291–302 http://dx.doi.org/10.1215/S0012-7094-45-01223-3[Crossref] | Zbl 0060.26202

[10] James R.C., Inner product in normed linear spaces, Bull. Amer. Math. Soc., 1947, 53(6), 559–566 http://dx.doi.org/10.1090/S0002-9904-1947-08831-5[Crossref] | Zbl 0041.43701

[11] James R.C., Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc., 1947, 61(2), 265–292 http://dx.doi.org/10.1090/S0002-9947-1947-0021241-4[Crossref]

[12] Jiménez-Melado A., Llorens-Fuster E., Mazcuñán-Navarro E.M., The Dunkl-Williams constant, convexity, smoothness and normal structure, J. Math. Anal. Appl., 2008, 342(1), 298–310 http://dx.doi.org/10.1016/j.jmaa.2007.11.045[Crossref][WoS] | Zbl 1151.46009

[13] Kato M., Saito K.-S., Tamura T., Sharp triangle inequality and its reverse in Banach spaces, Math. Inequal. Appl., 2007, 10(2), 451–460 | Zbl 1121.46019

[14] Kirk W.A., Smiley M.F., Another characterization of inner product spaces, Amer. Math. Monthly, 1964, 71(8), 890–891 http://dx.doi.org/10.2307/2312400[Crossref]

[15] Megginson R.E., An Introduction to Banach Space Theory, Grad. Texts in Math., 183, Springer, New York, 1998 http://dx.doi.org/10.1007/978-1-4612-0603-3[Crossref]

[16] Moslehian M.S., Dadipour F., Rajic R., Maric A., A glimpse at the Dunkl-Williams inequality, Banach J. Math. Anal., 2011, 5(2), 138–151 | Zbl 1225.47022

[17] Nilsrakoo W., Saejung S., The James constant of normalized norms on R2, J. Inequal. Appl., 2006, #26265 | Zbl 1104.46007

[18] Pečaric J., Rajic R., Inequalities of the Dunkl-Williams type for absolute value operators, J. Math. Inequal., 2010, 4(1), 1–10 http://dx.doi.org/10.7153/jmi-04-01[Crossref] | Zbl 1186.26020

[19] Saito K.-S., Tominaga M., A Dunkl-Williams type inequality for absolute value operators, Linear Algebra Appl., 2010, 432(12), 3258–3264 http://dx.doi.org/10.1016/j.laa.2010.01.016[WoS][Crossref] | Zbl 1195.26044